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(2000) and Just et al. (2015).3 The aim of this work is to extend
these two works, to consider a wider selection of M1 closures, to
verify them using a wider range of test problems that are relevant to
neutrino transport and to present a quantitative assessment of their
quality.

In this work, we evaluate the quality of various closures proposed
in the literature by comparing the radiation field distribution in and
around radiating objects obtained with the M1 method with the one
obtained analytically or with Monte Carlo (MC). We consider two
types of radiating objects: a uniform sphere with a sharp surface and
a PNS with a hot envelope obtained from core-collapse simulations.
These two objects possess the opaque central radiating source sur-
rounded by a transparent envelope, i.e. the important characteristics
common to many astrophysical systems. Since our goal is to study
the quality of the analytical closures and in order not to contami-
nate our results with errors emanating from other sources such as
hydrodynamics and non-linear radiation–matter coupling, we con-
sider only static matter configurations in our tests. For simplicity,
we limit ourselves to spherical symmetry and ignore space–time
curvature around PNSs. Implications of these assumptions will be
discussed in Section 5.

The uniform sphere problem consists of an opaque radiating
sphere with a sharp surface surrounded by vacuum, and it has an
analytical solution (cf. Section 4.2). In the PNS problem, we take
three different post-bounce configurations (obtained from simula-
tions of Ott et al. 2008) of a 20 M! progenitor star at 160, 260 and
360 ms after bounce. We obtain precise solution of this problem by
performing MC radiation transport calculations using the code of
Abdikamalov et al. (2012, cf. Section 4.3). These solutions
are compared to M1 solutions obtained using the GR1D code
(O’Connor & Ott 2011, 2013; O’Connor 2015) available at
http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by
Kershaw (1976), Wilson et al. (1975) and Levermore (1984), the
classical maximum entropy (ME) closure of Minerbo (1978), and
the ME closure with the Fermi-Dirac distribution by Cernohorsky
& Bludman (1994). In addition, we consider two closures by Janka
(1991) that are constructed by fitting closure relations to exact MC
solutions of the radiation field around PNSs (Janka 1991).

This paper is organized as follows. In Section 2, we give a the-
oretical overview of the neutrino transport problem and the M1
scheme. In Section 3, we give a brief description of the seven clo-
sures we study in this work. Section 4 presents the details of the
test problems. We also describe our tools for systematic quantitative
assessment of the quality of the closure relations and present the
results of our analysis. Our conclusions are provided in Section 5. In
Appendix A, we describe the two codes that we use in our analysis:
the GR1D code for M1 transport and the MC code of Abdikamalov
et al. (2012).

2 BO LT Z M A N N E QUAT I O N A N D M 1 M E T H O D

Neutrinos are described by the distribution function F , which char-
acterizes the number of neutrinos in a phase-space volume element

3 Note that there is a relation between the M1 scheme and the flux-limited
diffusion approximation, and each flux limiter is associated with an M1
closure relation (Levermore 1984; Smit et al. 2000). The quality of some
of the flux limiters has been explored by e.g. Burrows et al. (2000) and
Just et al. (2015) using the flux-limited diffusion framework for neutrino
transport in the context of CCSNe.

and which obeys the relativistic Boltzmann equation (e.g. Lindquist
1966; Mezzacappa & Matzner 1989):

dxα

dτ

∂F
∂xα

+ dpi

dτ

∂F
∂pi

= (−pαuα)S(pµ, xµ,F ). (1)

Here, τ is an affine parameter of the neutrino trajectory, uµ is the
four-velocity of the medium and pµ is the four-momentum of ra-
diation, from which one can obtain the neutrino energy in the rest
frame of the medium via relation ε = −pαuα . The Greek indices µ,
α = 0, 1, 2, 3 run over space–time components and the Latin indices
i = 1, 2, 3 run over the spatial components. S(pµ, xµ,F ) is the col-
lision term that describes the interaction of radiation with matter via
absorption, emission and scattering. The evaluation of S(pµ, xµ, f)
is a domain of a separate field of study and it is beyond the scope of
this work (e.g. Bruenn 1985; Burrows, Reddy & Thompson 2006).
In this work, we treat neutrinos as massless particles and fix units
using ! = c = 1.

The zeroth, first and second moments of the distribution function
represent the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p, (2)

the radiation flux,

F j
ν =

∫
pjF (pµ, xµ)δ(hν − ε)d3p, (3)

and the radiation pressure,

P ij
ν =

∫
pipjF (pµ, xµ)δ(hν − ε)

d3p

ε
. (4)

Here, Eν , F j
ν and P ij

ν are the functions of neutrino energy ε = p0 =
| p|. In order to obtain the total energy density, flux and pressure,
one has to integrate equations (2)–(4) over energy, as discussed in
e.g. Thorne (1981) and Novikov & Thorne (1973).

The zeroth and the first moments of the Boltzmann equation con-
stitute the system of equations for Eν and F j

ν . In Minkowski space,
spherical symmetry and neglecting the velocity of the medium,
these two evolution equations are

∂

∂t
Eν + 1

r2

∂

∂r

(
r2F r

ν

)
= S[0]ν, (5)

∂

∂t
F r

ν + 1
r2

∂

∂r

(
r2P rr

ν

)
= S[1]rν, (6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments
of the collision term S(pα, xβ ,F ). Note that, since we consider flat
space–time and static matter, the third moment does not appear in
this equation. As we pointed out above, this system is not closed.
There are two equations (5) and (6), but three unknowns Eν , F r

ν

and P rr
ν . This is a simple reflection of the fact that, although the

system (5)–(6) is obtained from the Boltzmann equation, it does not
capture all the information contained in the Boltzmann equation.
To capture the complete information, one has to solve the complete
system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (7)

where

M[k]α1...αk
ε0

=
∫

ε2F (pµ, xµ)δ(hν − ε)
pα1

ε
...

pαk

ε

d3p

ε
(8)

is the moment of order k. Note that subscripts and superscripts are
omitted in this equation to avoid clutter. This is an infinite system
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(2000) and Just et al. (2015).3 The aim of this work is to extend
these two works, to consider a wider selection of M1 closures, to
verify them using a wider range of test problems that are relevant to
neutrino transport and to present a quantitative assessment of their
quality.

In this work, we evaluate the quality of various closures proposed
in the literature by comparing the radiation field distribution in and
around radiating objects obtained with the M1 method with the one
obtained analytically or with Monte Carlo (MC). We consider two
types of radiating objects: a uniform sphere with a sharp surface and
a PNS with a hot envelope obtained from core-collapse simulations.
These two objects possess the opaque central radiating source sur-
rounded by a transparent envelope, i.e. the important characteristics
common to many astrophysical systems. Since our goal is to study
the quality of the analytical closures and in order not to contami-
nate our results with errors emanating from other sources such as
hydrodynamics and non-linear radiation–matter coupling, we con-
sider only static matter configurations in our tests. For simplicity,
we limit ourselves to spherical symmetry and ignore space–time
curvature around PNSs. Implications of these assumptions will be
discussed in Section 5.

The uniform sphere problem consists of an opaque radiating
sphere with a sharp surface surrounded by vacuum, and it has an
analytical solution (cf. Section 4.2). In the PNS problem, we take
three different post-bounce configurations (obtained from simula-
tions of Ott et al. 2008) of a 20 M! progenitor star at 160, 260 and
360 ms after bounce. We obtain precise solution of this problem by
performing MC radiation transport calculations using the code of
Abdikamalov et al. (2012, cf. Section 4.3). These solutions
are compared to M1 solutions obtained using the GR1D code
(O’Connor & Ott 2011, 2013; O’Connor 2015) available at
http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by
Kershaw (1976), Wilson et al. (1975) and Levermore (1984), the
classical maximum entropy (ME) closure of Minerbo (1978), and
the ME closure with the Fermi-Dirac distribution by Cernohorsky
& Bludman (1994). In addition, we consider two closures by Janka
(1991) that are constructed by fitting closure relations to exact MC
solutions of the radiation field around PNSs (Janka 1991).

This paper is organized as follows. In Section 2, we give a the-
oretical overview of the neutrino transport problem and the M1
scheme. In Section 3, we give a brief description of the seven clo-
sures we study in this work. Section 4 presents the details of the
test problems. We also describe our tools for systematic quantitative
assessment of the quality of the closure relations and present the
results of our analysis. Our conclusions are provided in Section 5. In
Appendix A, we describe the two codes that we use in our analysis:
the GR1D code for M1 transport and the MC code of Abdikamalov
et al. (2012).

2 BO LT Z M A N N E QUAT I O N A N D M 1 M E T H O D

Neutrinos are described by the distribution function F , which char-
acterizes the number of neutrinos in a phase-space volume element

3 Note that there is a relation between the M1 scheme and the flux-limited
diffusion approximation, and each flux limiter is associated with an M1
closure relation (Levermore 1984; Smit et al. 2000). The quality of some
of the flux limiters has been explored by e.g. Burrows et al. (2000) and
Just et al. (2015) using the flux-limited diffusion framework for neutrino
transport in the context of CCSNe.

and which obeys the relativistic Boltzmann equation (e.g. Lindquist
1966; Mezzacappa & Matzner 1989):

dxα

dτ

∂F
∂xα

+ dpi

dτ

∂F
∂pi

= (−pαuα)S(pµ, xµ,F ). (1)

Here, τ is an affine parameter of the neutrino trajectory, uµ is the
four-velocity of the medium and pµ is the four-momentum of ra-
diation, from which one can obtain the neutrino energy in the rest
frame of the medium via relation ε = −pαuα . The Greek indices µ,
α = 0, 1, 2, 3 run over space–time components and the Latin indices
i = 1, 2, 3 run over the spatial components. S(pµ, xµ,F ) is the col-
lision term that describes the interaction of radiation with matter via
absorption, emission and scattering. The evaluation of S(pµ, xµ, f)
is a domain of a separate field of study and it is beyond the scope of
this work (e.g. Bruenn 1985; Burrows, Reddy & Thompson 2006).
In this work, we treat neutrinos as massless particles and fix units
using ! = c = 1.

The zeroth, first and second moments of the distribution function
represent the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p, (2)

the radiation flux,

F j
ν =

∫
pjF (pµ, xµ)δ(hν − ε)d3p, (3)

and the radiation pressure,

P ij
ν =

∫
pipjF (pµ, xµ)δ(hν − ε)

d3p

ε
. (4)

Here, Eν , F j
ν and P ij

ν are the functions of neutrino energy ε = p0 =
| p|. In order to obtain the total energy density, flux and pressure,
one has to integrate equations (2)–(4) over energy, as discussed in
e.g. Thorne (1981) and Novikov & Thorne (1973).

The zeroth and the first moments of the Boltzmann equation con-
stitute the system of equations for Eν and F j

ν . In Minkowski space,
spherical symmetry and neglecting the velocity of the medium,
these two evolution equations are

∂

∂t
Eν + 1

r2

∂

∂r

(
r2F r

ν

)
= S[0]ν, (5)

∂

∂t
F r

ν + 1
r2

∂

∂r

(
r2P rr

ν

)
= S[1]rν, (6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments
of the collision term S(pα, xβ ,F ). Note that, since we consider flat
space–time and static matter, the third moment does not appear in
this equation. As we pointed out above, this system is not closed.
There are two equations (5) and (6), but three unknowns Eν , F r

ν

and P rr
ν . This is a simple reflection of the fact that, although the

system (5)–(6) is obtained from the Boltzmann equation, it does not
capture all the information contained in the Boltzmann equation.
To capture the complete information, one has to solve the complete
system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (7)

where

M[k]α1...αk
ε0

=
∫

ε2F (pµ, xµ)δ(hν − ε)
pα1

ε
...

pαk

ε

d3p

ε
(8)

is the moment of order k. Note that subscripts and superscripts are
omitted in this equation to avoid clutter. This is an infinite system
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(2000) and Just et al. (2015).3 The aim of this work is to extend
these two works, to consider a wider selection of M1 closures, to
verify them using a wider range of test problems that are relevant to
neutrino transport and to present a quantitative assessment of their
quality.

In this work, we evaluate the quality of various closures proposed
in the literature by comparing the radiation field distribution in and
around radiating objects obtained with the M1 method with the one
obtained analytically or with Monte Carlo (MC). We consider two
types of radiating objects: a uniform sphere with a sharp surface and
a PNS with a hot envelope obtained from core-collapse simulations.
These two objects possess the opaque central radiating source sur-
rounded by a transparent envelope, i.e. the important characteristics
common to many astrophysical systems. Since our goal is to study
the quality of the analytical closures and in order not to contami-
nate our results with errors emanating from other sources such as
hydrodynamics and non-linear radiation–matter coupling, we con-
sider only static matter configurations in our tests. For simplicity,
we limit ourselves to spherical symmetry and ignore space–time
curvature around PNSs. Implications of these assumptions will be
discussed in Section 5.

The uniform sphere problem consists of an opaque radiating
sphere with a sharp surface surrounded by vacuum, and it has an
analytical solution (cf. Section 4.2). In the PNS problem, we take
three different post-bounce configurations (obtained from simula-
tions of Ott et al. 2008) of a 20 M! progenitor star at 160, 260 and
360 ms after bounce. We obtain precise solution of this problem by
performing MC radiation transport calculations using the code of
Abdikamalov et al. (2012, cf. Section 4.3). These solutions
are compared to M1 solutions obtained using the GR1D code
(O’Connor & Ott 2011, 2013; O’Connor 2015) available at
http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by
Kershaw (1976), Wilson et al. (1975) and Levermore (1984), the
classical maximum entropy (ME) closure of Minerbo (1978), and
the ME closure with the Fermi-Dirac distribution by Cernohorsky
& Bludman (1994). In addition, we consider two closures by Janka
(1991) that are constructed by fitting closure relations to exact MC
solutions of the radiation field around PNSs (Janka 1991).

This paper is organized as follows. In Section 2, we give a the-
oretical overview of the neutrino transport problem and the M1
scheme. In Section 3, we give a brief description of the seven clo-
sures we study in this work. Section 4 presents the details of the
test problems. We also describe our tools for systematic quantitative
assessment of the quality of the closure relations and present the
results of our analysis. Our conclusions are provided in Section 5. In
Appendix A, we describe the two codes that we use in our analysis:
the GR1D code for M1 transport and the MC code of Abdikamalov
et al. (2012).

2 BO LT Z M A N N E QUAT I O N A N D M 1 M E T H O D

Neutrinos are described by the distribution function F , which char-
acterizes the number of neutrinos in a phase-space volume element

3 Note that there is a relation between the M1 scheme and the flux-limited
diffusion approximation, and each flux limiter is associated with an M1
closure relation (Levermore 1984; Smit et al. 2000). The quality of some
of the flux limiters has been explored by e.g. Burrows et al. (2000) and
Just et al. (2015) using the flux-limited diffusion framework for neutrino
transport in the context of CCSNe.

and which obeys the relativistic Boltzmann equation (e.g. Lindquist
1966; Mezzacappa & Matzner 1989):

dxα

dτ

∂F
∂xα

+ dpi

dτ

∂F
∂pi

= (−pαuα)S(pµ, xµ,F ). (1)

Here, τ is an affine parameter of the neutrino trajectory, uµ is the
four-velocity of the medium and pµ is the four-momentum of ra-
diation, from which one can obtain the neutrino energy in the rest
frame of the medium via relation ε = −pαuα . The Greek indices µ,
α = 0, 1, 2, 3 run over space–time components and the Latin indices
i = 1, 2, 3 run over the spatial components. S(pµ, xµ,F ) is the col-
lision term that describes the interaction of radiation with matter via
absorption, emission and scattering. The evaluation of S(pµ, xµ, f)
is a domain of a separate field of study and it is beyond the scope of
this work (e.g. Bruenn 1985; Burrows, Reddy & Thompson 2006).
In this work, we treat neutrinos as massless particles and fix units
using ! = c = 1.

The zeroth, first and second moments of the distribution function
represent the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p, (2)

the radiation flux,

F j
ν =

∫
pjF (pµ, xµ)δ(hν − ε)d3p, (3)

and the radiation pressure,

P ij
ν =

∫
pipjF (pµ, xµ)δ(hν − ε)

d3p

ε
. (4)

Here, Eν , F j
ν and P ij

ν are the functions of neutrino energy ε = p0 =
| p|. In order to obtain the total energy density, flux and pressure,
one has to integrate equations (2)–(4) over energy, as discussed in
e.g. Thorne (1981) and Novikov & Thorne (1973).

The zeroth and the first moments of the Boltzmann equation con-
stitute the system of equations for Eν and F j

ν . In Minkowski space,
spherical symmetry and neglecting the velocity of the medium,
these two evolution equations are

∂

∂t
Eν + 1

r2

∂

∂r

(
r2F r

ν

)
= S[0]ν, (5)

∂

∂t
F r

ν + 1
r2

∂

∂r

(
r2P rr

ν

)
= S[1]rν, (6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments
of the collision term S(pα, xβ ,F ). Note that, since we consider flat
space–time and static matter, the third moment does not appear in
this equation. As we pointed out above, this system is not closed.
There are two equations (5) and (6), but three unknowns Eν , F r

ν

and P rr
ν . This is a simple reflection of the fact that, although the

system (5)–(6) is obtained from the Boltzmann equation, it does not
capture all the information contained in the Boltzmann equation.
To capture the complete information, one has to solve the complete
system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (7)

where

M[k]α1...αk
ε0

=
∫

ε2F (pµ, xµ)δ(hν − ε)
pα1

ε
...

pαk

ε

d3p

ε
(8)

is the moment of order k. Note that subscripts and superscripts are
omitted in this equation to avoid clutter. This is an infinite system
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(2000) and Just et al. (2015).3 The aim of this work is to extend
these two works, to consider a wider selection of M1 closures, to
verify them using a wider range of test problems that are relevant to
neutrino transport and to present a quantitative assessment of their
quality.

In this work, we evaluate the quality of various closures proposed
in the literature by comparing the radiation field distribution in and
around radiating objects obtained with the M1 method with the one
obtained analytically or with Monte Carlo (MC). We consider two
types of radiating objects: a uniform sphere with a sharp surface and
a PNS with a hot envelope obtained from core-collapse simulations.
These two objects possess the opaque central radiating source sur-
rounded by a transparent envelope, i.e. the important characteristics
common to many astrophysical systems. Since our goal is to study
the quality of the analytical closures and in order not to contami-
nate our results with errors emanating from other sources such as
hydrodynamics and non-linear radiation–matter coupling, we con-
sider only static matter configurations in our tests. For simplicity,
we limit ourselves to spherical symmetry and ignore space–time
curvature around PNSs. Implications of these assumptions will be
discussed in Section 5.

The uniform sphere problem consists of an opaque radiating
sphere with a sharp surface surrounded by vacuum, and it has an
analytical solution (cf. Section 4.2). In the PNS problem, we take
three different post-bounce configurations (obtained from simula-
tions of Ott et al. 2008) of a 20 M! progenitor star at 160, 260 and
360 ms after bounce. We obtain precise solution of this problem by
performing MC radiation transport calculations using the code of
Abdikamalov et al. (2012, cf. Section 4.3). These solutions
are compared to M1 solutions obtained using the GR1D code
(O’Connor & Ott 2011, 2013; O’Connor 2015) available at
http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by
Kershaw (1976), Wilson et al. (1975) and Levermore (1984), the
classical maximum entropy (ME) closure of Minerbo (1978), and
the ME closure with the Fermi-Dirac distribution by Cernohorsky
& Bludman (1994). In addition, we consider two closures by Janka
(1991) that are constructed by fitting closure relations to exact MC
solutions of the radiation field around PNSs (Janka 1991).

This paper is organized as follows. In Section 2, we give a the-
oretical overview of the neutrino transport problem and the M1
scheme. In Section 3, we give a brief description of the seven clo-
sures we study in this work. Section 4 presents the details of the
test problems. We also describe our tools for systematic quantitative
assessment of the quality of the closure relations and present the
results of our analysis. Our conclusions are provided in Section 5. In
Appendix A, we describe the two codes that we use in our analysis:
the GR1D code for M1 transport and the MC code of Abdikamalov
et al. (2012).

2 BO LT Z M A N N E QUAT I O N A N D M 1 M E T H O D

Neutrinos are described by the distribution function F , which char-
acterizes the number of neutrinos in a phase-space volume element

3 Note that there is a relation between the M1 scheme and the flux-limited
diffusion approximation, and each flux limiter is associated with an M1
closure relation (Levermore 1984; Smit et al. 2000). The quality of some
of the flux limiters has been explored by e.g. Burrows et al. (2000) and
Just et al. (2015) using the flux-limited diffusion framework for neutrino
transport in the context of CCSNe.

and which obeys the relativistic Boltzmann equation (e.g. Lindquist
1966; Mezzacappa & Matzner 1989):

dxα

dτ

∂F
∂xα

+ dpi

dτ

∂F
∂pi

= (−pαuα)S(pµ, xµ,F ). (1)

Here, τ is an affine parameter of the neutrino trajectory, uµ is the
four-velocity of the medium and pµ is the four-momentum of ra-
diation, from which one can obtain the neutrino energy in the rest
frame of the medium via relation ε = −pαuα . The Greek indices µ,
α = 0, 1, 2, 3 run over space–time components and the Latin indices
i = 1, 2, 3 run over the spatial components. S(pµ, xµ,F ) is the col-
lision term that describes the interaction of radiation with matter via
absorption, emission and scattering. The evaluation of S(pµ, xµ, f)
is a domain of a separate field of study and it is beyond the scope of
this work (e.g. Bruenn 1985; Burrows, Reddy & Thompson 2006).
In this work, we treat neutrinos as massless particles and fix units
using ! = c = 1.

The zeroth, first and second moments of the distribution function
represent the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p, (2)

the radiation flux,

F j
ν =

∫
pjF (pµ, xµ)δ(hν − ε)d3p, (3)

and the radiation pressure,

P ij
ν =

∫
pipjF (pµ, xµ)δ(hν − ε)

d3p

ε
. (4)

Here, Eν , F j
ν and P ij

ν are the functions of neutrino energy ε = p0 =
| p|. In order to obtain the total energy density, flux and pressure,
one has to integrate equations (2)–(4) over energy, as discussed in
e.g. Thorne (1981) and Novikov & Thorne (1973).

The zeroth and the first moments of the Boltzmann equation con-
stitute the system of equations for Eν and F j

ν . In Minkowski space,
spherical symmetry and neglecting the velocity of the medium,
these two evolution equations are

∂

∂t
Eν + 1

r2

∂

∂r

(
r2F r

ν

)
= S[0]ν, (5)

∂

∂t
F r

ν + 1
r2

∂

∂r

(
r2P rr

ν

)
= S[1]rν, (6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments
of the collision term S(pα, xβ ,F ). Note that, since we consider flat
space–time and static matter, the third moment does not appear in
this equation. As we pointed out above, this system is not closed.
There are two equations (5) and (6), but three unknowns Eν , F r

ν

and P rr
ν . This is a simple reflection of the fact that, although the

system (5)–(6) is obtained from the Boltzmann equation, it does not
capture all the information contained in the Boltzmann equation.
To capture the complete information, one has to solve the complete
system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (7)

where

M[k]α1...αk
ε0

=
∫

ε2F (pµ, xµ)δ(hν − ε)
pα1

ε
...

pαk

ε

d3p

ε
(8)

is the moment of order k. Note that subscripts and superscripts are
omitted in this equation to avoid clutter. This is an infinite system
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(2000) and Just et al. (2015).3 The aim of this work is to extend
these two works, to consider a wider selection of M1 closures, to
verify them using a wider range of test problems that are relevant to
neutrino transport and to present a quantitative assessment of their
quality.

In this work, we evaluate the quality of various closures proposed
in the literature by comparing the radiation field distribution in and
around radiating objects obtained with the M1 method with the one
obtained analytically or with Monte Carlo (MC). We consider two
types of radiating objects: a uniform sphere with a sharp surface and
a PNS with a hot envelope obtained from core-collapse simulations.
These two objects possess the opaque central radiating source sur-
rounded by a transparent envelope, i.e. the important characteristics
common to many astrophysical systems. Since our goal is to study
the quality of the analytical closures and in order not to contami-
nate our results with errors emanating from other sources such as
hydrodynamics and non-linear radiation–matter coupling, we con-
sider only static matter configurations in our tests. For simplicity,
we limit ourselves to spherical symmetry and ignore space–time
curvature around PNSs. Implications of these assumptions will be
discussed in Section 5.

The uniform sphere problem consists of an opaque radiating
sphere with a sharp surface surrounded by vacuum, and it has an
analytical solution (cf. Section 4.2). In the PNS problem, we take
three different post-bounce configurations (obtained from simula-
tions of Ott et al. 2008) of a 20 M! progenitor star at 160, 260 and
360 ms after bounce. We obtain precise solution of this problem by
performing MC radiation transport calculations using the code of
Abdikamalov et al. (2012, cf. Section 4.3). These solutions
are compared to M1 solutions obtained using the GR1D code
(O’Connor & Ott 2011, 2013; O’Connor 2015) available at
http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by
Kershaw (1976), Wilson et al. (1975) and Levermore (1984), the
classical maximum entropy (ME) closure of Minerbo (1978), and
the ME closure with the Fermi-Dirac distribution by Cernohorsky
& Bludman (1994). In addition, we consider two closures by Janka
(1991) that are constructed by fitting closure relations to exact MC
solutions of the radiation field around PNSs (Janka 1991).

This paper is organized as follows. In Section 2, we give a the-
oretical overview of the neutrino transport problem and the M1
scheme. In Section 3, we give a brief description of the seven clo-
sures we study in this work. Section 4 presents the details of the
test problems. We also describe our tools for systematic quantitative
assessment of the quality of the closure relations and present the
results of our analysis. Our conclusions are provided in Section 5. In
Appendix A, we describe the two codes that we use in our analysis:
the GR1D code for M1 transport and the MC code of Abdikamalov
et al. (2012).

2 BO LT Z M A N N E QUAT I O N A N D M 1 M E T H O D

Neutrinos are described by the distribution function F , which char-
acterizes the number of neutrinos in a phase-space volume element

3 Note that there is a relation between the M1 scheme and the flux-limited
diffusion approximation, and each flux limiter is associated with an M1
closure relation (Levermore 1984; Smit et al. 2000). The quality of some
of the flux limiters has been explored by e.g. Burrows et al. (2000) and
Just et al. (2015) using the flux-limited diffusion framework for neutrino
transport in the context of CCSNe.

and which obeys the relativistic Boltzmann equation (e.g. Lindquist
1966; Mezzacappa & Matzner 1989):

dxα

dτ

∂F
∂xα

+ dpi

dτ

∂F
∂pi

= (−pαuα)S(pµ, xµ,F ). (1)

Here, τ is an affine parameter of the neutrino trajectory, uµ is the
four-velocity of the medium and pµ is the four-momentum of ra-
diation, from which one can obtain the neutrino energy in the rest
frame of the medium via relation ε = −pαuα . The Greek indices µ,
α = 0, 1, 2, 3 run over space–time components and the Latin indices
i = 1, 2, 3 run over the spatial components. S(pµ, xµ,F ) is the col-
lision term that describes the interaction of radiation with matter via
absorption, emission and scattering. The evaluation of S(pµ, xµ, f)
is a domain of a separate field of study and it is beyond the scope of
this work (e.g. Bruenn 1985; Burrows, Reddy & Thompson 2006).
In this work, we treat neutrinos as massless particles and fix units
using ! = c = 1.

The zeroth, first and second moments of the distribution function
represent the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p, (2)

the radiation flux,

F j
ν =

∫
pjF (pµ, xµ)δ(hν − ε)d3p, (3)

and the radiation pressure,

P ij
ν =

∫
pipjF (pµ, xµ)δ(hν − ε)

d3p

ε
. (4)

Here, Eν , F j
ν and P ij

ν are the functions of neutrino energy ε = p0 =
| p|. In order to obtain the total energy density, flux and pressure,
one has to integrate equations (2)–(4) over energy, as discussed in
e.g. Thorne (1981) and Novikov & Thorne (1973).

The zeroth and the first moments of the Boltzmann equation con-
stitute the system of equations for Eν and F j

ν . In Minkowski space,
spherical symmetry and neglecting the velocity of the medium,
these two evolution equations are

∂

∂t
Eν + 1

r2

∂

∂r

(
r2F r

ν

)
= S[0]ν, (5)

∂

∂t
F r

ν + 1
r2

∂

∂r

(
r2P rr

ν

)
= S[1]rν, (6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments
of the collision term S(pα, xβ ,F ). Note that, since we consider flat
space–time and static matter, the third moment does not appear in
this equation. As we pointed out above, this system is not closed.
There are two equations (5) and (6), but three unknowns Eν , F r

ν

and P rr
ν . This is a simple reflection of the fact that, although the

system (5)–(6) is obtained from the Boltzmann equation, it does not
capture all the information contained in the Boltzmann equation.
To capture the complete information, one has to solve the complete
system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (7)

where

M[k]α1...αk
ε0

=
∫

ε2F (pµ, xµ)δ(hν − ε)
pα1

ε
...

pαk

ε

d3p

ε
(8)

is the moment of order k. Note that subscripts and superscripts are
omitted in this equation to avoid clutter. This is an infinite system
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(2000) and Just et al. (2015).3 The aim of this work is to extend
these two works, to consider a wider selection of M1 closures, to
verify them using a wider range of test problems that are relevant to
neutrino transport and to present a quantitative assessment of their
quality.

In this work, we evaluate the quality of various closures proposed
in the literature by comparing the radiation field distribution in and
around radiating objects obtained with the M1 method with the one
obtained analytically or with Monte Carlo (MC). We consider two
types of radiating objects: a uniform sphere with a sharp surface and
a PNS with a hot envelope obtained from core-collapse simulations.
These two objects possess the opaque central radiating source sur-
rounded by a transparent envelope, i.e. the important characteristics
common to many astrophysical systems. Since our goal is to study
the quality of the analytical closures and in order not to contami-
nate our results with errors emanating from other sources such as
hydrodynamics and non-linear radiation–matter coupling, we con-
sider only static matter configurations in our tests. For simplicity,
we limit ourselves to spherical symmetry and ignore space–time
curvature around PNSs. Implications of these assumptions will be
discussed in Section 5.

The uniform sphere problem consists of an opaque radiating
sphere with a sharp surface surrounded by vacuum, and it has an
analytical solution (cf. Section 4.2). In the PNS problem, we take
three different post-bounce configurations (obtained from simula-
tions of Ott et al. 2008) of a 20 M! progenitor star at 160, 260 and
360 ms after bounce. We obtain precise solution of this problem by
performing MC radiation transport calculations using the code of
Abdikamalov et al. (2012, cf. Section 4.3). These solutions
are compared to M1 solutions obtained using the GR1D code
(O’Connor & Ott 2011, 2013; O’Connor 2015) available at
http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by
Kershaw (1976), Wilson et al. (1975) and Levermore (1984), the
classical maximum entropy (ME) closure of Minerbo (1978), and
the ME closure with the Fermi-Dirac distribution by Cernohorsky
& Bludman (1994). In addition, we consider two closures by Janka
(1991) that are constructed by fitting closure relations to exact MC
solutions of the radiation field around PNSs (Janka 1991).

This paper is organized as follows. In Section 2, we give a the-
oretical overview of the neutrino transport problem and the M1
scheme. In Section 3, we give a brief description of the seven clo-
sures we study in this work. Section 4 presents the details of the
test problems. We also describe our tools for systematic quantitative
assessment of the quality of the closure relations and present the
results of our analysis. Our conclusions are provided in Section 5. In
Appendix A, we describe the two codes that we use in our analysis:
the GR1D code for M1 transport and the MC code of Abdikamalov
et al. (2012).

2 BO LT Z M A N N E QUAT I O N A N D M 1 M E T H O D

Neutrinos are described by the distribution function F , which char-
acterizes the number of neutrinos in a phase-space volume element

3 Note that there is a relation between the M1 scheme and the flux-limited
diffusion approximation, and each flux limiter is associated with an M1
closure relation (Levermore 1984; Smit et al. 2000). The quality of some
of the flux limiters has been explored by e.g. Burrows et al. (2000) and
Just et al. (2015) using the flux-limited diffusion framework for neutrino
transport in the context of CCSNe.

and which obeys the relativistic Boltzmann equation (e.g. Lindquist
1966; Mezzacappa & Matzner 1989):

dxα

dτ

∂F
∂xα

+ dpi

dτ

∂F
∂pi

= (−pαuα)S(pµ, xµ,F ). (1)

Here, τ is an affine parameter of the neutrino trajectory, uµ is the
four-velocity of the medium and pµ is the four-momentum of ra-
diation, from which one can obtain the neutrino energy in the rest
frame of the medium via relation ε = −pαuα . The Greek indices µ,
α = 0, 1, 2, 3 run over space–time components and the Latin indices
i = 1, 2, 3 run over the spatial components. S(pµ, xµ,F ) is the col-
lision term that describes the interaction of radiation with matter via
absorption, emission and scattering. The evaluation of S(pµ, xµ, f)
is a domain of a separate field of study and it is beyond the scope of
this work (e.g. Bruenn 1985; Burrows, Reddy & Thompson 2006).
In this work, we treat neutrinos as massless particles and fix units
using ! = c = 1.

The zeroth, first and second moments of the distribution function
represent the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p, (2)

the radiation flux,

F j
ν =

∫
pjF (pµ, xµ)δ(hν − ε)d3p, (3)

and the radiation pressure,

P ij
ν =

∫
pipjF (pµ, xµ)δ(hν − ε)

d3p

ε
. (4)

Here, Eν , F j
ν and P ij

ν are the functions of neutrino energy ε = p0 =
| p|. In order to obtain the total energy density, flux and pressure,
one has to integrate equations (2)–(4) over energy, as discussed in
e.g. Thorne (1981) and Novikov & Thorne (1973).

The zeroth and the first moments of the Boltzmann equation con-
stitute the system of equations for Eν and F j

ν . In Minkowski space,
spherical symmetry and neglecting the velocity of the medium,
these two evolution equations are

∂

∂t
Eν + 1

r2

∂

∂r

(
r2F r

ν

)
= S[0]ν, (5)

∂

∂t
F r

ν + 1
r2

∂

∂r

(
r2P rr

ν

)
= S[1]rν, (6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments
of the collision term S(pα, xβ ,F ). Note that, since we consider flat
space–time and static matter, the third moment does not appear in
this equation. As we pointed out above, this system is not closed.
There are two equations (5) and (6), but three unknowns Eν , F r

ν

and P rr
ν . This is a simple reflection of the fact that, although the

system (5)–(6) is obtained from the Boltzmann equation, it does not
capture all the information contained in the Boltzmann equation.
To capture the complete information, one has to solve the complete
system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (7)

where

M[k]α1...αk
ε0

=
∫

ε2F (pµ, xµ)δ(hν − ε)
pα1

ε
...

pαk

ε

d3p

ε
(8)

is the moment of order k. Note that subscripts and superscripts are
omitted in this equation to avoid clutter. This is an infinite system
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)

MNRAS 469, 1725–1737 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/469/2/1725/3752461 by W
aseda U

niversity user on 07 M
arch 2020

Wilson closure:

Analytic closures for M1 neutrino transport 1729

Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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MEFD (Maximum entropy closure for
fermionic radiation):
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).
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Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
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dashed lines. Note that, in the limit of maximum packing, the MEFD
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This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
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[
1 + af m + (2 − a)f n
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where a, n and m are the fitting parameters. We consider two clo-
sures corresponding to sets {a = 0.5, b = 1.3064, n = 4.1342}
Janka_1 and {a = 1, b = 1.345, n = 5.1717} Janka_2. The
former is obtained by combining the MC outputs for electron neutri-
nos from two matter distribution models corresponding to extended
hot shocked mantle and compact post-bounce configuration. The
latter closure is obtained from the νµ radiation field of the matter
configuration at 300 ms after bounce. These two closures are shown
in Fig. 1 with dark and bright purple colours, respectively.

4 R ESULTS

In order to assess the quality of M1 results, we consider the radiation
field in and around the uniform sphere (Section 4.2) and a set of PNS
models (Section 4.3). The former case has an analytical solution,
while the latter is calculated with the MC method using the code of
Abdikamalov et al. (2012). Both of these problems have the central
opaque region and outer transparent envelope common to many
astrophysical sources.

4.1 Quantitative estimate of accuracy

In order to estimate the accuracy of the M1 results, we use the
normalized mean square deviation and the spectrum-weighted mean
square deviation. The former is defined as

δY (X) =

√√√√ 1
NX

Xmax∑

Xmin

[
1 − Y (Xi)

Y0(Xi)

]2

. (27)

Here, Y stands for any quantity we want to compare (e.g. energy
density, flux factor, etc.), while Y0 is the ‘exact’ value of this quantity
obtained from the analytical solution or an MC calculation. X is a
variable on which both Y and Y0 depend (e.g. the radial coordinate)
and Xi are its discrete values ranging from Xmin to Xmax. Thus, δY
provides an estimate of how well the closure solution approximates
the exact solution in the entire range from Xmin to Xmax.

The spectrum-weighted mean square deviation is defined as

δ̄Y =
∑

wiδYi∑
wi

, wi = Si/Smax, (28)

where i is the index of the neutrino energy group and δYi is defined
by equation (27) for each energy group independently. The spectral
weights wi are obtained using the spectral energy density Si at en-
ergy εi and the peak value of spectral energy density Smax. In our
analysis of the spectral weighted quantities, we restrict ourselves to
the energies lying near the spectral peak. More specifically, we con-
sider only the energy groups with spectral energy densities greater
than 0.3Smax in order to cut out low statistics energy groups.

4.2 Uniform sphere

The uniform sphere problem consists of a static homogeneous and
isothermal sphere of radius R surrounded by vacuum. Matter inside
the sphere can absorb and emit radiation. This problem has an
analytical solution and possesses important physical and numerical
characteristics. The central opaque source with transparent outer
regions are characteristics of many astrophysical systems, while the
sharp surface represents a serious challenge for many numerical
techniques. For this reason, this problem is often used as a test
problem for radiation transport codes (Schinder & Bludman 1989;
Smit et al. 1997; Rampp & Janka 2002; O’Connor 2015)

Figure 2. The flux factor f and the Eddington factor p as a function of
radial coordinate. The matter background is a uniform radiative sphere with
κR = 7500. The dim grey line is the analytical solution and the colourful lines
are the M1 approximations. The performance of the closures is quantitatively
evaluated in Table 1. The dashed yellow line (Fit) belongs to equation (31),
which is the fit to analytical closure obtained from equation (29).

The analytical solution for the distribution function is given as

F (r, µ) = B
[
1 − e−κRs(r,µ)] , (29)

where r is the radial coordinate, R is the radius of the sphere,
µ = cos θ ,

s(r, µ) =






r

R
µ + g(r, µ) if r < R, −1 ≤ µ ≤ 1

2g(r, µ) if r ≥ R,

√
1 −

(
R
r

)2 ≤ µ ≤ 1

0 otherwise

and

g(r, µ) =
√

1 −
( r

R

)2
(1 − µ2). (30)

Inside the sphere, the absorption coefficient κ and emissivity B are
constants. Outside the sphere, there is no emission and absorption.
For our test, we use κR = 7500 and B = 1, which ensures that radi-
ation is fully isotropic inside the sphere and a tiny region ∼1/κ %
R separates it from the free-streaming regime outside the sphere.

The flux factor f (top panel) and the Eddington factor p (bottom
panel) as a function of the radial coordinate are shown in Fig. 2. The
dim grey line represents the analytical solution, while the rest of
the lines represent the solutions obtained with M1 approximations.
The values of normalized mean square deviations of these solutions
from the analytical result are listed in Table 1.

As we see, all closures perform poorly for this problem. The
Kershaw closure yields significantly worse results than the rest of
the closures. The normalized mean square deviation of the flux and
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where a, n and m are the fitting parameters. We consider two clo-
sures corresponding to sets {a = 0.5, b = 1.3064, n = 4.1342}
Janka_1 and {a = 1, b = 1.345, n = 5.1717} Janka_2. The
former is obtained by combining the MC outputs for electron neutri-
nos from two matter distribution models corresponding to extended
hot shocked mantle and compact post-bounce configuration. The
latter closure is obtained from the νµ radiation field of the matter
configuration at 300 ms after bounce. These two closures are shown
in Fig. 1 with dark and bright purple colours, respectively.

4 R ESULTS

In order to assess the quality of M1 results, we consider the radiation
field in and around the uniform sphere (Section 4.2) and a set of PNS
models (Section 4.3). The former case has an analytical solution,
while the latter is calculated with the MC method using the code of
Abdikamalov et al. (2012). Both of these problems have the central
opaque region and outer transparent envelope common to many
astrophysical sources.

4.1 Quantitative estimate of accuracy

In order to estimate the accuracy of the M1 results, we use the
normalized mean square deviation and the spectrum-weighted mean
square deviation. The former is defined as

δY (X) =

√√√√ 1
NX

Xmax∑

Xmin

[
1 − Y (Xi)

Y0(Xi)

]2

. (27)

Here, Y stands for any quantity we want to compare (e.g. energy
density, flux factor, etc.), while Y0 is the ‘exact’ value of this quantity
obtained from the analytical solution or an MC calculation. X is a
variable on which both Y and Y0 depend (e.g. the radial coordinate)
and Xi are its discrete values ranging from Xmin to Xmax. Thus, δY
provides an estimate of how well the closure solution approximates
the exact solution in the entire range from Xmin to Xmax.

The spectrum-weighted mean square deviation is defined as

δ̄Y =
∑

wiδYi∑
wi

, wi = Si/Smax, (28)

where i is the index of the neutrino energy group and δYi is defined
by equation (27) for each energy group independently. The spectral
weights wi are obtained using the spectral energy density Si at en-
ergy εi and the peak value of spectral energy density Smax. In our
analysis of the spectral weighted quantities, we restrict ourselves to
the energies lying near the spectral peak. More specifically, we con-
sider only the energy groups with spectral energy densities greater
than 0.3Smax in order to cut out low statistics energy groups.

4.2 Uniform sphere

The uniform sphere problem consists of a static homogeneous and
isothermal sphere of radius R surrounded by vacuum. Matter inside
the sphere can absorb and emit radiation. This problem has an
analytical solution and possesses important physical and numerical
characteristics. The central opaque source with transparent outer
regions are characteristics of many astrophysical systems, while the
sharp surface represents a serious challenge for many numerical
techniques. For this reason, this problem is often used as a test
problem for radiation transport codes (Schinder & Bludman 1989;
Smit et al. 1997; Rampp & Janka 2002; O’Connor 2015)

Figure 2. The flux factor f and the Eddington factor p as a function of
radial coordinate. The matter background is a uniform radiative sphere with
κR = 7500. The dim grey line is the analytical solution and the colourful lines
are the M1 approximations. The performance of the closures is quantitatively
evaluated in Table 1. The dashed yellow line (Fit) belongs to equation (31),
which is the fit to analytical closure obtained from equation (29).

The analytical solution for the distribution function is given as

F (r, µ) = B
[
1 − e−κRs(r,µ)] , (29)

where r is the radial coordinate, R is the radius of the sphere,
µ = cos θ ,

s(r, µ) =






r

R
µ + g(r, µ) if r < R, −1 ≤ µ ≤ 1

2g(r, µ) if r ≥ R,

√
1 −

(
R
r

)2 ≤ µ ≤ 1

0 otherwise

and

g(r, µ) =
√

1 −
( r

R

)2
(1 − µ2). (30)

Inside the sphere, the absorption coefficient κ and emissivity B are
constants. Outside the sphere, there is no emission and absorption.
For our test, we use κR = 7500 and B = 1, which ensures that radi-
ation is fully isotropic inside the sphere and a tiny region ∼1/κ %
R separates it from the free-streaming regime outside the sphere.

The flux factor f (top panel) and the Eddington factor p (bottom
panel) as a function of the radial coordinate are shown in Fig. 2. The
dim grey line represents the analytical solution, while the rest of
the lines represent the solutions obtained with M1 approximations.
The values of normalized mean square deviations of these solutions
from the analytical result are listed in Table 1.

As we see, all closures perform poorly for this problem. The
Kershaw closure yields significantly worse results than the rest of
the closures. The normalized mean square deviation of the flux and
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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where a, n and m are the fitting parameters. We consider two clo-
sures corresponding to sets {a = 0.5, b = 1.3064, n = 4.1342}
Janka_1 and {a = 1, b = 1.345, n = 5.1717} Janka_2. The
former is obtained by combining the MC outputs for electron neutri-
nos from two matter distribution models corresponding to extended
hot shocked mantle and compact post-bounce configuration. The
latter closure is obtained from the νµ radiation field of the matter
configuration at 300 ms after bounce. These two closures are shown
in Fig. 1 with dark and bright purple colours, respectively.

4 R ESULTS

In order to assess the quality of M1 results, we consider the radiation
field in and around the uniform sphere (Section 4.2) and a set of PNS
models (Section 4.3). The former case has an analytical solution,
while the latter is calculated with the MC method using the code of
Abdikamalov et al. (2012). Both of these problems have the central
opaque region and outer transparent envelope common to many
astrophysical sources.

4.1 Quantitative estimate of accuracy

In order to estimate the accuracy of the M1 results, we use the
normalized mean square deviation and the spectrum-weighted mean
square deviation. The former is defined as

δY (X) =

√√√√ 1
NX

Xmax∑

Xmin

[
1 − Y (Xi)

Y0(Xi)

]2

. (27)

Here, Y stands for any quantity we want to compare (e.g. energy
density, flux factor, etc.), while Y0 is the ‘exact’ value of this quantity
obtained from the analytical solution or an MC calculation. X is a
variable on which both Y and Y0 depend (e.g. the radial coordinate)
and Xi are its discrete values ranging from Xmin to Xmax. Thus, δY
provides an estimate of how well the closure solution approximates
the exact solution in the entire range from Xmin to Xmax.

The spectrum-weighted mean square deviation is defined as

δ̄Y =
∑

wiδYi∑
wi

, wi = Si/Smax, (28)

where i is the index of the neutrino energy group and δYi is defined
by equation (27) for each energy group independently. The spectral
weights wi are obtained using the spectral energy density Si at en-
ergy εi and the peak value of spectral energy density Smax. In our
analysis of the spectral weighted quantities, we restrict ourselves to
the energies lying near the spectral peak. More specifically, we con-
sider only the energy groups with spectral energy densities greater
than 0.3Smax in order to cut out low statistics energy groups.

4.2 Uniform sphere

The uniform sphere problem consists of a static homogeneous and
isothermal sphere of radius R surrounded by vacuum. Matter inside
the sphere can absorb and emit radiation. This problem has an
analytical solution and possesses important physical and numerical
characteristics. The central opaque source with transparent outer
regions are characteristics of many astrophysical systems, while the
sharp surface represents a serious challenge for many numerical
techniques. For this reason, this problem is often used as a test
problem for radiation transport codes (Schinder & Bludman 1989;
Smit et al. 1997; Rampp & Janka 2002; O’Connor 2015)

Figure 2. The flux factor f and the Eddington factor p as a function of
radial coordinate. The matter background is a uniform radiative sphere with
κR = 7500. The dim grey line is the analytical solution and the colourful lines
are the M1 approximations. The performance of the closures is quantitatively
evaluated in Table 1. The dashed yellow line (Fit) belongs to equation (31),
which is the fit to analytical closure obtained from equation (29).

The analytical solution for the distribution function is given as

F (r, µ) = B
[
1 − e−κRs(r,µ)] , (29)

where r is the radial coordinate, R is the radius of the sphere,
µ = cos θ ,

s(r, µ) =






r

R
µ + g(r, µ) if r < R, −1 ≤ µ ≤ 1

2g(r, µ) if r ≥ R,

√
1 −

(
R
r

)2 ≤ µ ≤ 1

0 otherwise

and

g(r, µ) =
√

1 −
( r

R

)2
(1 − µ2). (30)

Inside the sphere, the absorption coefficient κ and emissivity B are
constants. Outside the sphere, there is no emission and absorption.
For our test, we use κR = 7500 and B = 1, which ensures that radi-
ation is fully isotropic inside the sphere and a tiny region ∼1/κ %
R separates it from the free-streaming regime outside the sphere.

The flux factor f (top panel) and the Eddington factor p (bottom
panel) as a function of the radial coordinate are shown in Fig. 2. The
dim grey line represents the analytical solution, while the rest of
the lines represent the solutions obtained with M1 approximations.
The values of normalized mean square deviations of these solutions
from the analytical result are listed in Table 1.

As we see, all closures perform poorly for this problem. The
Kershaw closure yields significantly worse results than the rest of
the closures. The normalized mean square deviation of the flux and
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where a, n and m are the fitting parameters. We consider two clo-
sures corresponding to sets {a = 0.5, b = 1.3064, n = 4.1342}
Janka_1 and {a = 1, b = 1.345, n = 5.1717} Janka_2. The
former is obtained by combining the MC outputs for electron neutri-
nos from two matter distribution models corresponding to extended
hot shocked mantle and compact post-bounce configuration. The
latter closure is obtained from the νµ radiation field of the matter
configuration at 300 ms after bounce. These two closures are shown
in Fig. 1 with dark and bright purple colours, respectively.

4 R ESULTS

In order to assess the quality of M1 results, we consider the radiation
field in and around the uniform sphere (Section 4.2) and a set of PNS
models (Section 4.3). The former case has an analytical solution,
while the latter is calculated with the MC method using the code of
Abdikamalov et al. (2012). Both of these problems have the central
opaque region and outer transparent envelope common to many
astrophysical sources.

4.1 Quantitative estimate of accuracy

In order to estimate the accuracy of the M1 results, we use the
normalized mean square deviation and the spectrum-weighted mean
square deviation. The former is defined as

δY (X) =

√√√√ 1
NX

Xmax∑

Xmin

[
1 − Y (Xi)

Y0(Xi)

]2

. (27)

Here, Y stands for any quantity we want to compare (e.g. energy
density, flux factor, etc.), while Y0 is the ‘exact’ value of this quantity
obtained from the analytical solution or an MC calculation. X is a
variable on which both Y and Y0 depend (e.g. the radial coordinate)
and Xi are its discrete values ranging from Xmin to Xmax. Thus, δY
provides an estimate of how well the closure solution approximates
the exact solution in the entire range from Xmin to Xmax.

The spectrum-weighted mean square deviation is defined as

δ̄Y =
∑

wiδYi∑
wi

, wi = Si/Smax, (28)

where i is the index of the neutrino energy group and δYi is defined
by equation (27) for each energy group independently. The spectral
weights wi are obtained using the spectral energy density Si at en-
ergy εi and the peak value of spectral energy density Smax. In our
analysis of the spectral weighted quantities, we restrict ourselves to
the energies lying near the spectral peak. More specifically, we con-
sider only the energy groups with spectral energy densities greater
than 0.3Smax in order to cut out low statistics energy groups.

4.2 Uniform sphere

The uniform sphere problem consists of a static homogeneous and
isothermal sphere of radius R surrounded by vacuum. Matter inside
the sphere can absorb and emit radiation. This problem has an
analytical solution and possesses important physical and numerical
characteristics. The central opaque source with transparent outer
regions are characteristics of many astrophysical systems, while the
sharp surface represents a serious challenge for many numerical
techniques. For this reason, this problem is often used as a test
problem for radiation transport codes (Schinder & Bludman 1989;
Smit et al. 1997; Rampp & Janka 2002; O’Connor 2015)

Figure 2. The flux factor f and the Eddington factor p as a function of
radial coordinate. The matter background is a uniform radiative sphere with
κR = 7500. The dim grey line is the analytical solution and the colourful lines
are the M1 approximations. The performance of the closures is quantitatively
evaluated in Table 1. The dashed yellow line (Fit) belongs to equation (31),
which is the fit to analytical closure obtained from equation (29).

The analytical solution for the distribution function is given as

F (r, µ) = B
[
1 − e−κRs(r,µ)] , (29)

where r is the radial coordinate, R is the radius of the sphere,
µ = cos θ ,

s(r, µ) =






r

R
µ + g(r, µ) if r < R, −1 ≤ µ ≤ 1

2g(r, µ) if r ≥ R,

√
1 −

(
R
r

)2 ≤ µ ≤ 1

0 otherwise

and

g(r, µ) =
√

1 −
( r

R

)2
(1 − µ2). (30)

Inside the sphere, the absorption coefficient κ and emissivity B are
constants. Outside the sphere, there is no emission and absorption.
For our test, we use κR = 7500 and B = 1, which ensures that radi-
ation is fully isotropic inside the sphere and a tiny region ∼1/κ %
R separates it from the free-streaming regime outside the sphere.

The flux factor f (top panel) and the Eddington factor p (bottom
panel) as a function of the radial coordinate are shown in Fig. 2. The
dim grey line represents the analytical solution, while the rest of
the lines represent the solutions obtained with M1 approximations.
The values of normalized mean square deviations of these solutions
from the analytical result are listed in Table 1.

As we see, all closures perform poorly for this problem. The
Kershaw closure yields significantly worse results than the rest of
the closures. The normalized mean square deviation of the flux and
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).
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boundary of the MEFD closure. The other boundary is the classical
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(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
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+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).
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where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
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where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD
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This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
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+ 2f 2
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(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
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where a, n and m are the fitting parameters. We consider two clo-
sures corresponding to sets {a = 0.5, b = 1.3064, n = 4.1342}
Janka_1 and {a = 1, b = 1.345, n = 5.1717} Janka_2. The
former is obtained by combining the MC outputs for electron neutri-
nos from two matter distribution models corresponding to extended
hot shocked mantle and compact post-bounce configuration. The
latter closure is obtained from the νµ radiation field of the matter
configuration at 300 ms after bounce. These two closures are shown
in Fig. 1 with dark and bright purple colours, respectively.

4 R ESULTS

In order to assess the quality of M1 results, we consider the radiation
field in and around the uniform sphere (Section 4.2) and a set of PNS
models (Section 4.3). The former case has an analytical solution,
while the latter is calculated with the MC method using the code of
Abdikamalov et al. (2012). Both of these problems have the central
opaque region and outer transparent envelope common to many
astrophysical sources.

4.1 Quantitative estimate of accuracy

In order to estimate the accuracy of the M1 results, we use the
normalized mean square deviation and the spectrum-weighted mean
square deviation. The former is defined as

δY (X) =

√√√√ 1
NX

Xmax∑

Xmin

[
1 − Y (Xi)

Y0(Xi)

]2

. (27)

Here, Y stands for any quantity we want to compare (e.g. energy
density, flux factor, etc.), while Y0 is the ‘exact’ value of this quantity
obtained from the analytical solution or an MC calculation. X is a
variable on which both Y and Y0 depend (e.g. the radial coordinate)
and Xi are its discrete values ranging from Xmin to Xmax. Thus, δY
provides an estimate of how well the closure solution approximates
the exact solution in the entire range from Xmin to Xmax.

The spectrum-weighted mean square deviation is defined as

δ̄Y =
∑

wiδYi∑
wi

, wi = Si/Smax, (28)

where i is the index of the neutrino energy group and δYi is defined
by equation (27) for each energy group independently. The spectral
weights wi are obtained using the spectral energy density Si at en-
ergy εi and the peak value of spectral energy density Smax. In our
analysis of the spectral weighted quantities, we restrict ourselves to
the energies lying near the spectral peak. More specifically, we con-
sider only the energy groups with spectral energy densities greater
than 0.3Smax in order to cut out low statistics energy groups.

4.2 Uniform sphere

The uniform sphere problem consists of a static homogeneous and
isothermal sphere of radius R surrounded by vacuum. Matter inside
the sphere can absorb and emit radiation. This problem has an
analytical solution and possesses important physical and numerical
characteristics. The central opaque source with transparent outer
regions are characteristics of many astrophysical systems, while the
sharp surface represents a serious challenge for many numerical
techniques. For this reason, this problem is often used as a test
problem for radiation transport codes (Schinder & Bludman 1989;
Smit et al. 1997; Rampp & Janka 2002; O’Connor 2015)

Figure 2. The flux factor f and the Eddington factor p as a function of
radial coordinate. The matter background is a uniform radiative sphere with
κR = 7500. The dim grey line is the analytical solution and the colourful lines
are the M1 approximations. The performance of the closures is quantitatively
evaluated in Table 1. The dashed yellow line (Fit) belongs to equation (31),
which is the fit to analytical closure obtained from equation (29).

The analytical solution for the distribution function is given as

F (r, µ) = B
[
1 − e−κRs(r,µ)] , (29)

where r is the radial coordinate, R is the radius of the sphere,
µ = cos θ ,

s(r, µ) =






r

R
µ + g(r, µ) if r < R, −1 ≤ µ ≤ 1

2g(r, µ) if r ≥ R,

√
1 −

(
R
r

)2 ≤ µ ≤ 1

0 otherwise

and

g(r, µ) =
√

1 −
( r

R

)2
(1 − µ2). (30)

Inside the sphere, the absorption coefficient κ and emissivity B are
constants. Outside the sphere, there is no emission and absorption.
For our test, we use κR = 7500 and B = 1, which ensures that radi-
ation is fully isotropic inside the sphere and a tiny region ∼1/κ %
R separates it from the free-streaming regime outside the sphere.

The flux factor f (top panel) and the Eddington factor p (bottom
panel) as a function of the radial coordinate are shown in Fig. 2. The
dim grey line represents the analytical solution, while the rest of
the lines represent the solutions obtained with M1 approximations.
The values of normalized mean square deviations of these solutions
from the analytical result are listed in Table 1.

As we see, all closures perform poorly for this problem. The
Kershaw closure yields significantly worse results than the rest of
the closures. The normalized mean square deviation of the flux and
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where a, n and m are the fitting parameters. We consider two clo-
sures corresponding to sets {a = 0.5, b = 1.3064, n = 4.1342}
Janka_1 and {a = 1, b = 1.345, n = 5.1717} Janka_2. The
former is obtained by combining the MC outputs for electron neutri-
nos from two matter distribution models corresponding to extended
hot shocked mantle and compact post-bounce configuration. The
latter closure is obtained from the νµ radiation field of the matter
configuration at 300 ms after bounce. These two closures are shown
in Fig. 1 with dark and bright purple colours, respectively.

4 R ESULTS

In order to assess the quality of M1 results, we consider the radiation
field in and around the uniform sphere (Section 4.2) and a set of PNS
models (Section 4.3). The former case has an analytical solution,
while the latter is calculated with the MC method using the code of
Abdikamalov et al. (2012). Both of these problems have the central
opaque region and outer transparent envelope common to many
astrophysical sources.

4.1 Quantitative estimate of accuracy

In order to estimate the accuracy of the M1 results, we use the
normalized mean square deviation and the spectrum-weighted mean
square deviation. The former is defined as

δY (X) =

√√√√ 1
NX

Xmax∑

Xmin

[
1 − Y (Xi)

Y0(Xi)

]2

. (27)

Here, Y stands for any quantity we want to compare (e.g. energy
density, flux factor, etc.), while Y0 is the ‘exact’ value of this quantity
obtained from the analytical solution or an MC calculation. X is a
variable on which both Y and Y0 depend (e.g. the radial coordinate)
and Xi are its discrete values ranging from Xmin to Xmax. Thus, δY
provides an estimate of how well the closure solution approximates
the exact solution in the entire range from Xmin to Xmax.

The spectrum-weighted mean square deviation is defined as

δ̄Y =
∑

wiδYi∑
wi

, wi = Si/Smax, (28)

where i is the index of the neutrino energy group and δYi is defined
by equation (27) for each energy group independently. The spectral
weights wi are obtained using the spectral energy density Si at en-
ergy εi and the peak value of spectral energy density Smax. In our
analysis of the spectral weighted quantities, we restrict ourselves to
the energies lying near the spectral peak. More specifically, we con-
sider only the energy groups with spectral energy densities greater
than 0.3Smax in order to cut out low statistics energy groups.

4.2 Uniform sphere

The uniform sphere problem consists of a static homogeneous and
isothermal sphere of radius R surrounded by vacuum. Matter inside
the sphere can absorb and emit radiation. This problem has an
analytical solution and possesses important physical and numerical
characteristics. The central opaque source with transparent outer
regions are characteristics of many astrophysical systems, while the
sharp surface represents a serious challenge for many numerical
techniques. For this reason, this problem is often used as a test
problem for radiation transport codes (Schinder & Bludman 1989;
Smit et al. 1997; Rampp & Janka 2002; O’Connor 2015)

Figure 2. The flux factor f and the Eddington factor p as a function of
radial coordinate. The matter background is a uniform radiative sphere with
κR = 7500. The dim grey line is the analytical solution and the colourful lines
are the M1 approximations. The performance of the closures is quantitatively
evaluated in Table 1. The dashed yellow line (Fit) belongs to equation (31),
which is the fit to analytical closure obtained from equation (29).

The analytical solution for the distribution function is given as

F (r, µ) = B
[
1 − e−κRs(r,µ)] , (29)

where r is the radial coordinate, R is the radius of the sphere,
µ = cos θ ,

s(r, µ) =






r

R
µ + g(r, µ) if r < R, −1 ≤ µ ≤ 1

2g(r, µ) if r ≥ R,

√
1 −

(
R
r

)2 ≤ µ ≤ 1

0 otherwise

and

g(r, µ) =
√

1 −
( r

R

)2
(1 − µ2). (30)

Inside the sphere, the absorption coefficient κ and emissivity B are
constants. Outside the sphere, there is no emission and absorption.
For our test, we use κR = 7500 and B = 1, which ensures that radi-
ation is fully isotropic inside the sphere and a tiny region ∼1/κ %
R separates it from the free-streaming regime outside the sphere.

The flux factor f (top panel) and the Eddington factor p (bottom
panel) as a function of the radial coordinate are shown in Fig. 2. The
dim grey line represents the analytical solution, while the rest of
the lines represent the solutions obtained with M1 approximations.
The values of normalized mean square deviations of these solutions
from the analytical result are listed in Table 1.

As we see, all closures perform poorly for this problem. The
Kershaw closure yields significantly worse results than the rest of
the closures. The normalized mean square deviation of the flux and
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)

MNRAS 469, 1725–1737 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/469/2/1725/3752461 by W
aseda U

niversity user on 07 M
arch 2020



Maximum Entropy Closure

19
94
Ap
J.
..
43
3.
.2
50
C

19
94
Ap
J.
..
43
3.
.2
50
C

19
94
Ap
J.
..
43
3.
.2
50
C

! = 0.5

! = 0.9
! = 0.99

heavy line:
thin line:

Bose-Einstein statistics considerably 
enhance the forward-peaking

e = 0

J. Cernohorsky, S. A. Bludman (1994)' = 1
exp(- − /0) − 1

Bose Einstein Radiation

e = 0.4

f = 0.2

0.55

f = 0.4
f = 0.5

0.590.599f = 0.5999

(more isotropic)

(more forward-peaked)

f = 0.1

' = 1
exp(- − /0) + 1

Fermi-Dirac Radiation 

The distribution function approaches an angular
step-function with Fermi surface with increasing f.

(forward peak)

0 = -
/ ≈ 1 − 26



! → 0
Maxwell-
Boltzmann 

a → ∞
The maximal 

packing envelope 

e = 0.1

e = 0.2

e = 0.3

e = 0.4
e = 0.5

e = 0.6e = 0.75e = 0.9

a → 0
(isotropic)

! → ∞

Maxwell-
Boltzmann 

Bose-Einstein

Jankaʼs results by Monte Calro

e = 0.1, 0.2, 0.5, 1.0
2.0, 2.5, 10 

! → 0
0 = 1/3 → ∞
(isotropic)

Maximum Entropy Closure
J. Cernohorsky, S. A. Bludman (1994)4 = 1

exp(1 − 3:) − 1

Bose Einstein Radiation

4 = 1
exp(1 − 3:) + 1

Fermi-Dirac Radiation 



Comparison of p given by 1D Boltzmann solutions and MEFD closure

Low energy, optially thin

High energy, optically thick

Energy Density

Analytic closures for M1 neutrino transport 1727

(2000) and Just et al. (2015).3 The aim of this work is to extend
these two works, to consider a wider selection of M1 closures, to
verify them using a wider range of test problems that are relevant to
neutrino transport and to present a quantitative assessment of their
quality.

In this work, we evaluate the quality of various closures proposed
in the literature by comparing the radiation field distribution in and
around radiating objects obtained with the M1 method with the one
obtained analytically or with Monte Carlo (MC). We consider two
types of radiating objects: a uniform sphere with a sharp surface and
a PNS with a hot envelope obtained from core-collapse simulations.
These two objects possess the opaque central radiating source sur-
rounded by a transparent envelope, i.e. the important characteristics
common to many astrophysical systems. Since our goal is to study
the quality of the analytical closures and in order not to contami-
nate our results with errors emanating from other sources such as
hydrodynamics and non-linear radiation–matter coupling, we con-
sider only static matter configurations in our tests. For simplicity,
we limit ourselves to spherical symmetry and ignore space–time
curvature around PNSs. Implications of these assumptions will be
discussed in Section 5.

The uniform sphere problem consists of an opaque radiating
sphere with a sharp surface surrounded by vacuum, and it has an
analytical solution (cf. Section 4.2). In the PNS problem, we take
three different post-bounce configurations (obtained from simula-
tions of Ott et al. 2008) of a 20 M! progenitor star at 160, 260 and
360 ms after bounce. We obtain precise solution of this problem by
performing MC radiation transport calculations using the code of
Abdikamalov et al. (2012, cf. Section 4.3). These solutions
are compared to M1 solutions obtained using the GR1D code
(O’Connor & Ott 2011, 2013; O’Connor 2015) available at
http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by
Kershaw (1976), Wilson et al. (1975) and Levermore (1984), the
classical maximum entropy (ME) closure of Minerbo (1978), and
the ME closure with the Fermi-Dirac distribution by Cernohorsky
& Bludman (1994). In addition, we consider two closures by Janka
(1991) that are constructed by fitting closure relations to exact MC
solutions of the radiation field around PNSs (Janka 1991).

This paper is organized as follows. In Section 2, we give a the-
oretical overview of the neutrino transport problem and the M1
scheme. In Section 3, we give a brief description of the seven clo-
sures we study in this work. Section 4 presents the details of the
test problems. We also describe our tools for systematic quantitative
assessment of the quality of the closure relations and present the
results of our analysis. Our conclusions are provided in Section 5. In
Appendix A, we describe the two codes that we use in our analysis:
the GR1D code for M1 transport and the MC code of Abdikamalov
et al. (2012).

2 BO LT Z M A N N E QUAT I O N A N D M 1 M E T H O D

Neutrinos are described by the distribution function F , which char-
acterizes the number of neutrinos in a phase-space volume element

3 Note that there is a relation between the M1 scheme and the flux-limited
diffusion approximation, and each flux limiter is associated with an M1
closure relation (Levermore 1984; Smit et al. 2000). The quality of some
of the flux limiters has been explored by e.g. Burrows et al. (2000) and
Just et al. (2015) using the flux-limited diffusion framework for neutrino
transport in the context of CCSNe.

and which obeys the relativistic Boltzmann equation (e.g. Lindquist
1966; Mezzacappa & Matzner 1989):

dxα

dτ

∂F
∂xα

+ dpi

dτ

∂F
∂pi

= (−pαuα)S(pµ, xµ,F ). (1)

Here, τ is an affine parameter of the neutrino trajectory, uµ is the
four-velocity of the medium and pµ is the four-momentum of ra-
diation, from which one can obtain the neutrino energy in the rest
frame of the medium via relation ε = −pαuα . The Greek indices µ,
α = 0, 1, 2, 3 run over space–time components and the Latin indices
i = 1, 2, 3 run over the spatial components. S(pµ, xµ,F ) is the col-
lision term that describes the interaction of radiation with matter via
absorption, emission and scattering. The evaluation of S(pµ, xµ, f)
is a domain of a separate field of study and it is beyond the scope of
this work (e.g. Bruenn 1985; Burrows, Reddy & Thompson 2006).
In this work, we treat neutrinos as massless particles and fix units
using ! = c = 1.

The zeroth, first and second moments of the distribution function
represent the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p, (2)

the radiation flux,

F j
ν =

∫
pjF (pµ, xµ)δ(hν − ε)d3p, (3)

and the radiation pressure,

P ij
ν =

∫
pipjF (pµ, xµ)δ(hν − ε)

d3p

ε
. (4)

Here, Eν , F j
ν and P ij

ν are the functions of neutrino energy ε = p0 =
| p|. In order to obtain the total energy density, flux and pressure,
one has to integrate equations (2)–(4) over energy, as discussed in
e.g. Thorne (1981) and Novikov & Thorne (1973).

The zeroth and the first moments of the Boltzmann equation con-
stitute the system of equations for Eν and F j

ν . In Minkowski space,
spherical symmetry and neglecting the velocity of the medium,
these two evolution equations are

∂

∂t
Eν + 1

r2

∂

∂r

(
r2F r

ν

)
= S[0]ν, (5)

∂

∂t
F r

ν + 1
r2

∂

∂r

(
r2P rr

ν

)
= S[1]rν, (6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments
of the collision term S(pα, xβ ,F ). Note that, since we consider flat
space–time and static matter, the third moment does not appear in
this equation. As we pointed out above, this system is not closed.
There are two equations (5) and (6), but three unknowns Eν , F r

ν

and P rr
ν . This is a simple reflection of the fact that, although the

system (5)–(6) is obtained from the Boltzmann equation, it does not
capture all the information contained in the Boltzmann equation.
To capture the complete information, one has to solve the complete
system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (7)

where

M[k]α1...αk
ε0

=
∫

ε2F (pµ, xµ)δ(hν − ε)
pα1

ε
...

pαk

ε

d3p

ε
(8)

is the moment of order k. Note that subscripts and superscripts are
omitted in this equation to avoid clutter. This is an infinite system
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(2000) and Just et al. (2015).3 The aim of this work is to extend
these two works, to consider a wider selection of M1 closures, to
verify them using a wider range of test problems that are relevant to
neutrino transport and to present a quantitative assessment of their
quality.

In this work, we evaluate the quality of various closures proposed
in the literature by comparing the radiation field distribution in and
around radiating objects obtained with the M1 method with the one
obtained analytically or with Monte Carlo (MC). We consider two
types of radiating objects: a uniform sphere with a sharp surface and
a PNS with a hot envelope obtained from core-collapse simulations.
These two objects possess the opaque central radiating source sur-
rounded by a transparent envelope, i.e. the important characteristics
common to many astrophysical systems. Since our goal is to study
the quality of the analytical closures and in order not to contami-
nate our results with errors emanating from other sources such as
hydrodynamics and non-linear radiation–matter coupling, we con-
sider only static matter configurations in our tests. For simplicity,
we limit ourselves to spherical symmetry and ignore space–time
curvature around PNSs. Implications of these assumptions will be
discussed in Section 5.

The uniform sphere problem consists of an opaque radiating
sphere with a sharp surface surrounded by vacuum, and it has an
analytical solution (cf. Section 4.2). In the PNS problem, we take
three different post-bounce configurations (obtained from simula-
tions of Ott et al. 2008) of a 20 M! progenitor star at 160, 260 and
360 ms after bounce. We obtain precise solution of this problem by
performing MC radiation transport calculations using the code of
Abdikamalov et al. (2012, cf. Section 4.3). These solutions
are compared to M1 solutions obtained using the GR1D code
(O’Connor & Ott 2011, 2013; O’Connor 2015) available at
http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by
Kershaw (1976), Wilson et al. (1975) and Levermore (1984), the
classical maximum entropy (ME) closure of Minerbo (1978), and
the ME closure with the Fermi-Dirac distribution by Cernohorsky
& Bludman (1994). In addition, we consider two closures by Janka
(1991) that are constructed by fitting closure relations to exact MC
solutions of the radiation field around PNSs (Janka 1991).

This paper is organized as follows. In Section 2, we give a the-
oretical overview of the neutrino transport problem and the M1
scheme. In Section 3, we give a brief description of the seven clo-
sures we study in this work. Section 4 presents the details of the
test problems. We also describe our tools for systematic quantitative
assessment of the quality of the closure relations and present the
results of our analysis. Our conclusions are provided in Section 5. In
Appendix A, we describe the two codes that we use in our analysis:
the GR1D code for M1 transport and the MC code of Abdikamalov
et al. (2012).

2 BO LT Z M A N N E QUAT I O N A N D M 1 M E T H O D

Neutrinos are described by the distribution function F , which char-
acterizes the number of neutrinos in a phase-space volume element

3 Note that there is a relation between the M1 scheme and the flux-limited
diffusion approximation, and each flux limiter is associated with an M1
closure relation (Levermore 1984; Smit et al. 2000). The quality of some
of the flux limiters has been explored by e.g. Burrows et al. (2000) and
Just et al. (2015) using the flux-limited diffusion framework for neutrino
transport in the context of CCSNe.

and which obeys the relativistic Boltzmann equation (e.g. Lindquist
1966; Mezzacappa & Matzner 1989):

dxα

dτ

∂F
∂xα

+ dpi

dτ

∂F
∂pi

= (−pαuα)S(pµ, xµ,F ). (1)

Here, τ is an affine parameter of the neutrino trajectory, uµ is the
four-velocity of the medium and pµ is the four-momentum of ra-
diation, from which one can obtain the neutrino energy in the rest
frame of the medium via relation ε = −pαuα . The Greek indices µ,
α = 0, 1, 2, 3 run over space–time components and the Latin indices
i = 1, 2, 3 run over the spatial components. S(pµ, xµ,F ) is the col-
lision term that describes the interaction of radiation with matter via
absorption, emission and scattering. The evaluation of S(pµ, xµ, f)
is a domain of a separate field of study and it is beyond the scope of
this work (e.g. Bruenn 1985; Burrows, Reddy & Thompson 2006).
In this work, we treat neutrinos as massless particles and fix units
using ! = c = 1.

The zeroth, first and second moments of the distribution function
represent the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p, (2)

the radiation flux,

F j
ν =

∫
pjF (pµ, xµ)δ(hν − ε)d3p, (3)

and the radiation pressure,

P ij
ν =

∫
pipjF (pµ, xµ)δ(hν − ε)

d3p

ε
. (4)

Here, Eν , F j
ν and P ij

ν are the functions of neutrino energy ε = p0 =
| p|. In order to obtain the total energy density, flux and pressure,
one has to integrate equations (2)–(4) over energy, as discussed in
e.g. Thorne (1981) and Novikov & Thorne (1973).

The zeroth and the first moments of the Boltzmann equation con-
stitute the system of equations for Eν and F j

ν . In Minkowski space,
spherical symmetry and neglecting the velocity of the medium,
these two evolution equations are

∂

∂t
Eν + 1

r2

∂

∂r

(
r2F r

ν

)
= S[0]ν, (5)

∂

∂t
F r

ν + 1
r2

∂

∂r

(
r2P rr

ν

)
= S[1]rν, (6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments
of the collision term S(pα, xβ ,F ). Note that, since we consider flat
space–time and static matter, the third moment does not appear in
this equation. As we pointed out above, this system is not closed.
There are two equations (5) and (6), but three unknowns Eν , F r

ν

and P rr
ν . This is a simple reflection of the fact that, although the

system (5)–(6) is obtained from the Boltzmann equation, it does not
capture all the information contained in the Boltzmann equation.
To capture the complete information, one has to solve the complete
system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (7)

where

M[k]α1...αk
ε0

=
∫

ε2F (pµ, xµ)δ(hν − ε)
pα1

ε
...

pαk

ε

d3p

ε
(8)

is the moment of order k. Note that subscripts and superscripts are
omitted in this equation to avoid clutter. This is an infinite system
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(2000) and Just et al. (2015).3 The aim of this work is to extend
these two works, to consider a wider selection of M1 closures, to
verify them using a wider range of test problems that are relevant to
neutrino transport and to present a quantitative assessment of their
quality.

In this work, we evaluate the quality of various closures proposed
in the literature by comparing the radiation field distribution in and
around radiating objects obtained with the M1 method with the one
obtained analytically or with Monte Carlo (MC). We consider two
types of radiating objects: a uniform sphere with a sharp surface and
a PNS with a hot envelope obtained from core-collapse simulations.
These two objects possess the opaque central radiating source sur-
rounded by a transparent envelope, i.e. the important characteristics
common to many astrophysical systems. Since our goal is to study
the quality of the analytical closures and in order not to contami-
nate our results with errors emanating from other sources such as
hydrodynamics and non-linear radiation–matter coupling, we con-
sider only static matter configurations in our tests. For simplicity,
we limit ourselves to spherical symmetry and ignore space–time
curvature around PNSs. Implications of these assumptions will be
discussed in Section 5.

The uniform sphere problem consists of an opaque radiating
sphere with a sharp surface surrounded by vacuum, and it has an
analytical solution (cf. Section 4.2). In the PNS problem, we take
three different post-bounce configurations (obtained from simula-
tions of Ott et al. 2008) of a 20 M! progenitor star at 160, 260 and
360 ms after bounce. We obtain precise solution of this problem by
performing MC radiation transport calculations using the code of
Abdikamalov et al. (2012, cf. Section 4.3). These solutions
are compared to M1 solutions obtained using the GR1D code
(O’Connor & Ott 2011, 2013; O’Connor 2015) available at
http://www.GR1Dcode.org.

We consider seven different closures. These are the closures by
Kershaw (1976), Wilson et al. (1975) and Levermore (1984), the
classical maximum entropy (ME) closure of Minerbo (1978), and
the ME closure with the Fermi-Dirac distribution by Cernohorsky
& Bludman (1994). In addition, we consider two closures by Janka
(1991) that are constructed by fitting closure relations to exact MC
solutions of the radiation field around PNSs (Janka 1991).

This paper is organized as follows. In Section 2, we give a the-
oretical overview of the neutrino transport problem and the M1
scheme. In Section 3, we give a brief description of the seven clo-
sures we study in this work. Section 4 presents the details of the
test problems. We also describe our tools for systematic quantitative
assessment of the quality of the closure relations and present the
results of our analysis. Our conclusions are provided in Section 5. In
Appendix A, we describe the two codes that we use in our analysis:
the GR1D code for M1 transport and the MC code of Abdikamalov
et al. (2012).

2 BO LT Z M A N N E QUAT I O N A N D M 1 M E T H O D

Neutrinos are described by the distribution function F , which char-
acterizes the number of neutrinos in a phase-space volume element

3 Note that there is a relation between the M1 scheme and the flux-limited
diffusion approximation, and each flux limiter is associated with an M1
closure relation (Levermore 1984; Smit et al. 2000). The quality of some
of the flux limiters has been explored by e.g. Burrows et al. (2000) and
Just et al. (2015) using the flux-limited diffusion framework for neutrino
transport in the context of CCSNe.

and which obeys the relativistic Boltzmann equation (e.g. Lindquist
1966; Mezzacappa & Matzner 1989):

dxα

dτ

∂F
∂xα

+ dpi

dτ

∂F
∂pi

= (−pαuα)S(pµ, xµ,F ). (1)

Here, τ is an affine parameter of the neutrino trajectory, uµ is the
four-velocity of the medium and pµ is the four-momentum of ra-
diation, from which one can obtain the neutrino energy in the rest
frame of the medium via relation ε = −pαuα . The Greek indices µ,
α = 0, 1, 2, 3 run over space–time components and the Latin indices
i = 1, 2, 3 run over the spatial components. S(pµ, xµ,F ) is the col-
lision term that describes the interaction of radiation with matter via
absorption, emission and scattering. The evaluation of S(pµ, xµ, f)
is a domain of a separate field of study and it is beyond the scope of
this work (e.g. Bruenn 1985; Burrows, Reddy & Thompson 2006).
In this work, we treat neutrinos as massless particles and fix units
using ! = c = 1.

The zeroth, first and second moments of the distribution function
represent the energy density,

Eν =
∫

εF (pµ, xµ)δ(hν − ε)d3p, (2)

the radiation flux,

F j
ν =

∫
pjF (pµ, xµ)δ(hν − ε)d3p, (3)

and the radiation pressure,

P ij
ν =

∫
pipjF (pµ, xµ)δ(hν − ε)

d3p

ε
. (4)

Here, Eν , F j
ν and P ij

ν are the functions of neutrino energy ε = p0 =
| p|. In order to obtain the total energy density, flux and pressure,
one has to integrate equations (2)–(4) over energy, as discussed in
e.g. Thorne (1981) and Novikov & Thorne (1973).

The zeroth and the first moments of the Boltzmann equation con-
stitute the system of equations for Eν and F j

ν . In Minkowski space,
spherical symmetry and neglecting the velocity of the medium,
these two evolution equations are

∂

∂t
Eν + 1

r2

∂

∂r

(
r2F r

ν

)
= S[0]ν, (5)

∂

∂t
F r

ν + 1
r2

∂

∂r

(
r2P rr

ν

)
= S[1]rν, (6)

where S[0]ν and S[1]ν are accordingly the zeroth and first moments
of the collision term S(pα, xβ ,F ). Note that, since we consider flat
space–time and static matter, the third moment does not appear in
this equation. As we pointed out above, this system is not closed.
There are two equations (5) and (6), but three unknowns Eν , F r

ν

and P rr
ν . This is a simple reflection of the fact that, although the

system (5)–(6) is obtained from the Boltzmann equation, it does not
capture all the information contained in the Boltzmann equation.
To capture the complete information, one has to solve the complete
system, which can be expressed as

Function(M[0]...M[k + 1]) = S[k], (7)

where

M[k]α1...αk
ε0

=
∫

ε2F (pµ, xµ)δ(hν − ε)
pα1

ε
...

pαk

ε

d3p

ε
(8)

is the moment of order k. Note that subscripts and superscripts are
omitted in this equation to avoid clutter. This is an infinite system
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of an infinite number of unknowns M[k], which is not feasible to
solve in practice.

This situation is somewhat analogous to the Taylor expansion.
Function f(x) can be represented through the infinite sum

f (x) =
∑

N

1
N !

dNf (x)
dxN

∣∣∣∣∣
x=x0

(x − x0)N . (9)

This allows one to express the value of f(x) at an arbitrary point x
through its properties at a given point x0. In order to calculate f(x)
exactly, one has to incorporate all the terms in the infinite series.
The low-order terms yield accurate results only in the vicinity of
the point x0. Similar is true for the moments of the distribution
function. When we constrain ourselves to the first few moments,
we sacrifice the accuracy of our description. To capture all the
information contained in the distribution function, one needs to
employ the whole infinite set of moments.

The M1 approach used in the literature is based on an interpo-
lation of the radiation pressure Pij between optically thick and thin
limits (e.g. Shibata et al. 2011)

P ij
ν = 3p − 1

2
P

ij
thin + 3(1 − p)

2
P

ij
thick, (10)

where P
ij
thick and P

ij
thin are the radiation pressure in these limits. In

the former limit, radiation is in thermal equilibrium with matter and
is isotropic. This results in F i

ν = 0 and

P
ij
thick = 1

3
Eνδ

ij (11)

for the gas of ultrarelativistic particles such as photons and neutri-
nos (Mihalas & Weibel-Mihalas 1999). In the free-streaming limit,
radiation propagates like a beam along a certain direction n and
exerts pressure only along this direction, giving us Fn

ν = Eν and
F i "=n

ν = 0 and

P nn
thin = Eν

Fn
ν Fn

ν

|Fν |2
and P

ij
thin = 0, if i or j "= n. (12)

The parameter p in equation (10) is known as the variable Eddington
factor and it plays the role of the interpolation factor between the two
regimes. The functional form of p in terms of the lower moments is
referred to as the M1 closure.

Equation (10) is derived based on the assumption that the radi-
ation is symmetric around the direction parallel to the flux. While
the assumption is valid for the spherically symmetric matter and ra-
diation distributions, it does not always hold in more general cases.
Colliding radiation beams emanating from different sources is a
prominent example. Therefore, equation (10), even before we fix
the form of the function p, already contains an approximation.

Note that equation (10) in its modern form is often cited as
derived by Levermore (1984) in the literature. While it is true,
Kershaw (1976) also proposed the interpolation between thick and
thin regimes like equation (10). He then suggested using the simplest
among such interpolation

P ij
ν = Ef if j + E

3
δij

(
1 − f 2) , (13)

where

f i = F i
ν/Eν (14)

and f 2 = f ifi. This relation is equivalent to equation (10) with a
closure relation p = (1 + 2f2)/3, which is known as the Kershaw
closure. Even earlier, a formulation similar to M1 was discussed by
Pomraning (1969).

3 C L O S U R E S

In this section, we present a list of seven different closures most
commonly used in the literature and describe their main properties.

3.1 Kershaw closure

The Kershaw (1976) closure is a simple interpolation between the
optically thick (f → 0) and the optically thin (f → 1) limits. In the
spherically symmetric case, the Kershaw closure reads

p = 1 + 2f 2

3
. (15)

This closure is shown with the solid red line in Fig. 1. In the
following, we refer to this closure as the Kershaw closure.

3.2 Wilson closure

Wilson et al. (1975) and LeBlanc & Wilson (1970) presented a flux
limiter for neutrino diffusion, which corresponds to the closure

p = 1
3

− 1
3
f + f 2. (16)

Physically, this expression is equivalent to an interpolation of the
diffusive and free-streaming fluxes via harmonic averaging (Smit
et al. 2000). This ensures correct diffusive and free-streaming limits,
but may yield imprecise results in the intermediate regime. This
closure is shown with the solid yellow line in Fig. 1. Hereafter, we
refer to this closure as the Wilson closure.

3.3 Levermore closure

The Levermore closure can be derived assuming that the radiation is
isotropic and satisfies the Eddington closure (P ij

ν = P
ij
thick or p = 1/3

everywhere) in the ‘rest frame’ of radiation, i.e. in the frame in which
the radiation flux is zero (Levermore 1984; Sa̧dowski et al. 2013):

p = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (17)

This closure is shown with the solid green line in Fig. 1. We refer
to this closure as the Levermore closure.

3.4 MEFD: maximum entropy closure for fermionic radiation

The idea to use the ME principle to construct the closure relation
was first suggested by Minerbo (1978), who applied it to photons
assuming a classical distribution. Later, Cernohorsky & Bludman
(1994) applied it to fermions using the Fermi-Dirac distribution.

By maximizing the entropy functional

S[F (µ)] = (1 − F ) log(1 − F ) + F logF , (18)

under the constraints that the dimensionless zeroth and first mo-
ments,

e = Eν

ν3
=

2π∫

0

dφ

1∫

−1

Fdµ, (19)

f = Fν

Eν

=
2π∫

0

dφ

1∫

−1

µFdµ, (20)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):

p = 1
3

+ 2
3

(1 − e)(1 − 2e)χ
(

f

1 − e

)
, (22)

where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)

p = 1
3

(
1 − 2f + 4f 2) . (24)

This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.

3.5 ME: maximum entropy closure in the classical limit

The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
3

+ 2f 2

15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as

p = 1
3

[
1 + af m + (2 − a)f n

]
, (26)
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Figure 1. The closure relations for the Eddington factor p = P rr
ν /Eν as the function of flux factor f = F r

ν /Eν . The MEFD closure is a two parameter function
and is represented by series of curves for e = 0.1, 0.2, 0.3, 0.5, 0.7 and 0.9. The bottom curve is the limit of maximal packing. In the limit e → 0, the MEFD
closure reduces to its classical limit, the ME closure, represented by the solid sky blue line (see Section 3.4).

are given, one can obtain a distribution of radiation in terms of
Lagrange multipliers η and a (e.g. Smit et al. 2000):

F = 1
eη−aµ + 1

, (21)

where µ = cos θ . The second moment of equation (21) yields p as a
function of η and a. The closure relation is obtained by expressing
η and a in terms of e and f through inversion of e(η, a) and f(η, a):
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where χ (x) = 1 − 3/q(x) and q(x) is the inverse Langevin function
L(q) ≡ coth q − 1/q. The lowest order polynomial approximation
to function χ (x) that has the correct free-streaming and diffusive
limits is

χ (x) = x2(3 − x + 3x2)/5, (23)

which is ∼2 per cent accurate (Cernohorsky & Bludman 1994;
Smit et al. 2000). The substitution of this approximation into
equation (22) yields an analytical closure that is a function of both
f and e. We refer to this closure as the MEFD closure. It is shown
in Fig. 1 as a series of curves for e = 0.1, 0.3, 0.5, 0.7 and 0.9 with
dashed lines. Note that, in the limit of maximum packing, the MEFD

closure reduces to (e.g. Smit et al. 2000)
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This closure, shown with the bottom curve in Fig. 1, represents one
boundary of the MEFD closure. The other boundary is the classical
limit of this closure, the ME closure, discussed below.
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The classical limit of the MEFD closure is the closure by Minerbo
(1978). It can be obtained from equations (22)–(23) by formally
taking the e → 0 limit:

p = 1
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15
(3 − f + 3f 2). (25)

This closure is shown with the solid sky blue line in Fig. 1. We refer
to this closure as the ME closure.

3.6 Janka closures

Based on extensive MC neutrino transport calculations in PNS en-
velopes, Janka (1991, 1992) constructed several analytic fits to
energy-averaged radiation fields, which were parametrized as
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e~1の領域における問題点の修正⽅法

p < pmin, p > pmax

p = 1/3もしくはp = pminとする
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エネルギー領域

バウンス直後

p < 1/3の領域が顕著に発⽣するのは、
バウンス直後の数⼗ms？

結論づけるには、より⻑時間の解析が必要



親星依存性と回転の効果（２D LS 11.2Msol）

3.9MeV Boltz 3.9MeV              MEFD

14.4MeV Boltz

濃い⾊：p<1/3に相当する箇所

エディントンテンソルの主軸と
フラックスの⽅向の内積（流体静⽌系）

＜ ε= 3.9MeV ＞
原始中性⼦内部の領域で全体的に⼀致
対流部分ではわずかながらズレがある

＜ε = 14.4MeV＞
衝撃波直下の球殻状の領域で不⼀致

※中⼼部の⽩抜きの部分は精度
不⾜で信頼できる値ではない

14.4MeV             MEFD

対流発⽣箇所でも違いが⽣じている



Summary

ε = 3.9MeVの場合

Boltzmannの結果では原始中性⼦星の内部でp < 1/3の領域が形成され、MEFD closureにより与えられる結果
でも同じ位置でp<1/3の領域が存在することを確認できた。

ε = 14.4MeVの場合

Boltzmannの結果では衝撃波のすぐ下流側でp < 1/3の領域が形成されているが、MEFD closureでは再現でき
ないことがわかった。

Boltzmann-Hydroコードでニュートリノ輻射輸送を第⼀原理的に解いた重⼒崩壊型超新星のコアバウンス直後
の結果を利⽤して、MEFD(Maximum Entropy for Fermi-Dirac distribution) closureの検証を⾏った。

バウンス後10msでは、Boltzmannでp<1/3になる領域が発⽣し、MEFD closureでこの領域を⼀部再現できる
ということがわかった。

2Dではp < 1/3の領域で対流が発⽣しているが、流体静⽌系で⾒る限りBoltzmannとMEFDの結果はよく⼀致
している。

2Dでは原始中性⼦内部の対流が発⽣している領域で、BoltzmannとMEFDの結果が⼀致していない箇所が散⾒
された。



Discussion

バウンス直後の数10msにおいて、原始中性⼦星付近での低エネルギーニュートリノの輻射輸送に関しては、
MEFD closureの⽅がM1 closureよりも適していることがわかった。

より光学的に薄い領域で、どのclosureがよいかを結論づけるためには、ボルツマン⽅程式を解く際に運動量空
間の⾓度⽅向の解像度を上げる必要がある。

ただし、e~1の領域では、MEFD closureを与える式の引数の分⺟の値が0に近づくため、不適切な値になる場
合があり、強制的にp=1/3にするなどの処置が必要である。

ただし傾向を⾒ると、光学的にかなり薄い領域では、M1 closureよりもさらに前⽅集中型の分布を仮定した
closureである必要がありそうだ。

11.2, 15Msolの無回転星と回転星の2Dの結果があるので、今回の結果について親星と回転の影響を調べる。

Future Plan


