大陸三層モデルに基づく地球ニュートリノフラックスの評価

石塚雄太、鈴木英之(東京理科大学) 戎崎 俊一(理化学研究所) 丸山茂徳(東京工業大学地球生命研究所)

$$\Phi_{i}(\vec{r}) = A_{i} \cdot n_{i} \int \frac{a(\vec{r'})\rho(\vec{r'})}{4\pi |\vec{r} - \vec{r'}|^{2}} P(|\vec{r} - \vec{r'}|) d^{3}\vec{r'} \quad (i : U, Th)$$

(S.Enomoto et al., 2007)

<u> ř:観測場所の所在地</u>

KamLAND (北緯36.43°、東経137.31°、海抜 358 m)

<u>ハワイ (北緯19.72°、西経156.32°、海抜 -4000 m)</u>

<u>南太平洋(トケラウ諸島)海底(南緯10.5°、西経170.5°、海抜-4000 m)</u>

南太平洋(トケラウ諸島)海面

A_i: U, Th 単位質量当たりの崩壊率

 $A_{\rm U} = 1.24 \times 10^7 \,\text{s}^{-1} \,\text{kg}^{-1} , A_{\rm Th} = 4.06 \times 10^7 \,\text{s}^{-1} \,\text{kg}^{-1}$

n_i:崩壊時に放出するニュートリノ数

 $n_{\mathrm{U}}=6$, $n_{\mathrm{Th}}=~4$

 $P(|\vec{r} - \vec{r'}|): |\vec{r} - \vec{r'}|$ 移動後のニュートリノ振動による生存確率 P = 0.59 $a(\vec{r'}): 単位質量に対するU, Th の質量の割合$ $\rho(\vec{r'}): 密度$

地球ニュートリノフラックス計算

3

地球ニュートリノフラックス計算

先行研究(S.Enomoto et al., 2007)の地球参照モデル

Rese	ervoir	Concentration	
		[p]	pm]
		U	Th
Sadimant	Continental	2.8	10.7
Seament	Oceanic	1.7	6.9
	Upper	2.8	10.7
Continental Crust	Middle	1.6	6.1
Clust	Lower	0.2	1.2
Oceanic Cru	st	0.10	0.22
Montlo	Upper	0.012	0.048
Iviantie	Lower	0.012	0.048
Coro	Outer	0	0
Core Inner		0	0
Bulk Silicate	Earth (BSE)	0.0203	0.0795

本研究のContinental / Oceanic区分。緑がContinental部分に、青がOceanic部分に対応している。 さらに、赤でDetectorの位置を、黄色領域でU,Thの局所過剰領域を図示している。

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

観測サイト U/Th分布	Kamioka	ハワイ	太平洋海底	太平洋海面
先行研究(均一マントル分布)	1.00	0.36		
均一マントル分布	0.92	0.33	0.32	0.31
均一第三大陸分布	0.87	0.27	0.26	0.25
局所的第三大陸分布	0.84	0.38	0.47	0.46

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

観測サイト U/Th分布	Kamioka	ハワイ	太平洋海底	太平洋海面
先行研究(均一マントル分布)	1.00	0.36		
均一マントル分布	0.92	0.33	0.32	0.31
均一第三大陸分布	0.87	0.27	0.26	0.25
局所的第三大陸分布	0.84	0.38	0.47	0.46

フラックス(Kamioka、均一マントル分布)

フラックス(Kamioka、均一マントル分布)

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

観測サイト U/Th分布	Kamioka	ハワイ	太平洋海底	太平洋海面
先行研究(均一マントル分布)	1.00	0.36		
均一マントル分布	0.92	0.33	0.32	0.31
均一第三大陸分布	0.87	0.27	0.26	0.25
局所的第三大陸分布	0.84	0.38	0.47	0.46

フラックス(ハワイ、均一マントル分布)

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

観測サイト U/Th分布	Kamioka	ハワイ	太平洋海底	太平洋海面	
先行研究(均一マントル分布)	1.00	0.36			
均一マントル分布	0.92	0.33	0.32	0.31	
均一第三大陸分布	0.87	0.27	0.26	0.25	
局所的第三大陸分布	0.84	0.38	0.47	0.46	

フラックス(南太平洋、均一マントル分布)

南太平洋海底でのフラックス **1.39 × 10⁶ /(cm² · sec**)

南太平洋海面でのフラックス **1.35 × 10⁶ /(cm² · sec**)

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

			,	,
観測サイト U/Th分布	Kamioka	ハワイ	太平洋海底	太平洋海面
先行研究(均一マントル分布)	1.00	0.36		
均一マントル分布	0.92	0.33	0.32	0.31
均一第三大陸分布	0.87	0.27	0.26	0.25
局所的第三大陸分布	0.84	0.38	0.47	0.46

17

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

			,	· · · · ·
し/Th分布 U/Th分布	Kamioka	ハワイ	太平洋海底	太平洋海面
先行研究(均一マントル分布)	1.00	0.36		
均一マントル分布	0.92	0.33	0.32	0.31
均一第三大陸分布	0.87	0.27	0.26	0.25
局所的第三大陸分布	0.84	0.38	0.47	0.46

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

観測サイト U/Th分布	Kamioka	ハワイ	太平洋海底	太平洋海面
先行研究(均一マントル分布)	1.00	0.36		
均一マントル分布	0.92	0.33	0.32	0.31
均一第三大陸分布	0.87	0.27	0.26	0.25
局所的第三大陸分布	0.84	0.38	0.47	0.46

分布変更によるFluxに生じる相対的な変化

	Flux × 10 ⁶ [1/cm ² /sec]			
観測サイト U/Th分布	Kamioka	ハワイ	太平洋海底	
均一マントル分布	4.00	1.44	1.39	
均一第三大陸分布	3.76	1.19	1.14	
相対的な変化	-0.06	-0.17	-0.18	

 KamLANDでは6%
 しか相対的な変化が生じないのに対して、

 ハワイでは17%、南太平洋では18%
 相対的な変化が生じる。

 これは、大陸地殻の寄与の大きさに起因する。

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

観測サイト U/Th分布	Kamioka	いワイ	太平洋海底	太平洋海面
先行研究(均一マントル分布)	1.00	0.36		
均一マントル分布	0.92	0.33	0.32	0.31
均一第三大陸分布	0.87	0.27	0.26	0.25
局所的第三大陸分布	0.84	0.38	0.47	0.46

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

観測サイト U/Th分布	Kamioka	ハワイ	太平洋海底	太平洋海面
先行研究(均一マントル分布)	1.00	0.36		
均一マントル分布	0.92	0.33	0.32	0.31
均一第三大陸分布	0.87	0.27	0.26	0.25
局所的第三大陸分布	0.84	0.38	0.47	0.46

本研究の均一第三大陸分布の場合

本研究の局所的第三大陸分布の場合

Flux(Kamioka,先行研究(S.Enomoto et al., 2007))に対する相対評価

Flux / Flux(Kamioka,先行研究)

し/Th分布 し/Th分布	Kamioka	ハワイ	太平洋海底	太平洋海面
先行研究(均一マントル分布)	1.00	0.36		
均一マントル分布	0.92	0.33	0.32	0.31
均一第三大陸分布	0.87	0.27	0.26	0.25
局所的第三大陸分布	0.84	0.38	0.47	0.46

本研究の均一第三大陸分布の場合

本研究の局所的第三大陸分布の場合

分布変更によるFluxに生じる相対的な変化 Flux $\times 10^{6} [1/cm^{2}/sec]$ 観測サイト 太平洋海底 Kamioka ハワイ U/Th分布 1.19 1.14 均一第三大陸分布 3.76 局所的第三大陸分布 1.66 2.02 3.63 相対的な変化 -0.03 0.39 0.77

<u>KamLAND</u>では<u>3%</u>微減したのに対して、 <u>ハワイ</u>では<u>39%</u>、<u>太平洋</u>では<u>77%</u>増加している。 太平洋の過剰領域からの距離に依存して、増減している。

Detectorの場所を世界各地に置き、フラックスの傾向を 調べる

中性子星連星の起源となる超新星爆発に伴う 超新星背景ニュートリノとの関連について取り組みたい