Machine-learned Closure Relation for the Core-collapse Supernova Neutrino Transport.

-Fig.1 Supernova-

An explosion phenomenon that occurs when a star, which is about eight times more than the Sun, completes nuclear fusion inside.

We have to think about neutrino transportation

Introduction

7-dimensional equation of Phase space, momentum space and time

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \frac{\partial f}{\partial \boldsymbol{r}} + \boldsymbol{F} \frac{\partial f}{\partial \boldsymbol{P}} = (\frac{df}{dt})_{\text{coll}}$$

Numerical calculation takes time.

Use approximation method. But it is not good.

Up to about 20% error.

Use moment method

To make it easier to understand.

Integrate momentum space

$$\frac{\partial f}{\partial t} + \boldsymbol{P} \frac{\partial f}{\partial \boldsymbol{r}} = S_{rad}$$

Each

$$\Rightarrow \frac{\partial \mathbf{th}}{\partial t} + \nabla \cdot \mathbf{F} = \mathbf{Q}$$

$$\Rightarrow \frac{\partial \mathbf{F}}{\partial t} + \nabla \cdot \mathbf{K} = \mathbf{Q'}$$

$$egin{aligned} & rac{\partial \mathbf{f}}{\partial E} +
abla \cdot \mathbf{F} &= \mathbf{Q} \end{aligned} egin{aligned} & E = \epsilon \int f d^2 \Omega \ F^{i_1} &= \int f l^{i_1} d^2 \Omega \ K^{i_1 i_2} &= \int f l^{i_1} l^{i_2} d^2 \Omega \end{aligned} \ & \Rightarrow rac{\partial \mathbf{F}}{\partial t} +
abla \cdot \mathbf{K} &= \mathbf{Q'} \end{aligned} \end{aligned} egin{aligned} & Q &= \int S_{rad} d^2 \Omega \ Q'^{i_1} &= \int S_{rad} l^{i_1} d^2 \Omega \end{aligned}$$

Assuming the relationship of K = K(E, F) to close the hierarchy and solving it as an equation for E, F

It is called M1 closure method, because it considers even the first-order equation.

$$K = ET$$

$$T^{ij} = \frac{1 - \chi}{2} \delta^{ij} + \frac{3\chi - 1}{2} \frac{F^i F^j}{F^2}$$

$$\chi = \frac{3 + 4\tilde{f}^2}{5 + 2\sqrt{4 - 3\tilde{f}^2}}$$

$$\tilde{f} = \frac{|\mathbf{F}|}{cE}$$

Eddington tensor

Neural Network

Fig.4 Tensor Basis Neural Network

6 layer 1024 node

Result

TBNN

Fig.3 the diagonal component of Eddington tensor

Discussion

Thank you for listening.