Long time supernova simulation and
search for supernova
at Super-Kamiokande超新星爆発の長時間計算とスーパーカミオカンデでの超新星爆発探索

M. MORI^A, Y. SUWA^B, K. NAKAZATO^C, K SUMIYOSHI^D, Y. KOSHIO^E, M. HARADA^E, F.NAKANISHI, ^E A. HARADA^F, R. WENDELL^A, SK COLLABORATION

KYOTO UNIV^A. KYOTO SANGYO UNIV. ^B KYUSHU UNIV. ^C NUMAZU COL. ^D OKAYAMA UNIV. ^E ICRR^F

2021/1/8

1

Outline

- Developed a long time supernova simulation.
 - 1D
 - not use any artificial method.
 - 20 s
- Searched for supernovae at Super-Kamiokande
 - Especially distant supernovae.
 - Searched a collection of events for a short time (called event cluster)
 - Clusters are categorized into 6 types.
 - Optimized cut criteria with our long time supernova simulation and machine learning.
 - No supernova candidate
 - The upper limit is

0.36 [SN/year] (90%C.L.).

Problem of supernova analyses

• Almost all simulations concentrate on the first 1 second.

Developed a long time simulation

Luminosity and average energy

- Reached 20 s
- The last event of SN 1987A is about 12 s.

Search for supernovae at Super-Kamiokande

- One cluster remains in the signal region after all cuts.
- However this cluster is not supernova-like.
- No supernova candidate.
- The upper limit is

0.36 [SN/year] (90%C.L.).