超新星爆発における 回転誘起型ニュートリノ集団振動 arXiv:2110.08291, ApJ in press

原田了 (理研)

|共同研究者:長倉洋樹 (国立天文台),山田章一,岩上わかな,大川博督 (早稲田),古澤峻 (関東学院), 松古栄夫 (KEK), 住吉光介 (沼津高専)

第8回超新星ニュートリノ研究会@オンライン/早稲田 2022/1/7

Core-collapse supernova explosion

- Core collapse \rightarrow Proto-neutron star (PNS) & Bounce shock formation
- Shock stalls \rightarrow Neutrino emission from PNS re-energize the shock \rightarrow Explode!

Depends on: progenitor, nuclear equation of state (EOS), neutrino reactions, numerics Collective neutrino oscillation may change the explosion dynamics and neutrino signals

Neutrino oscillation

 $i\frac{\mathrm{d}}{\mathrm{d}t}\rho(p) = [H,\rho(p)] + \mathscr{C}[\rho]$

$H = H_{\text{vacuum}} + H$

 \cdot Neutrino oscillation \rightarrow Mismatch between flavor and energy eigenstates MSW effect : energy changes due to the interaction potential with electrons Collective neutrino oscillation : energy changes due to the interaction potential between neutrinos

: Quantum Kinetic Equation (QKE)

$$I_{\rm MSW} + \sqrt{2}G_{\rm F} \int d^3p'(1-\hat{p}\cdot\hat{p}')(\rho_{p'}-\bar{\rho}_{p'})$$

$$\nu - \nu \text{ interaction potential}$$

Collective neutrino oscillation

Slow mode

 $H = H_{\text{vacuum}} + H_{\nu - \nu}$

$$\omega_{\rm s} \sim \sqrt{\frac{\Delta m^2}{2E}} \sqrt{2} G_{\rm F} n_{\nu} \sim \mathcal{O}(10^{-2}) \,\mathrm{m}^{-1}$$

 Long conversion lengthscale →other physical processes may suppress the conversion

Fast mode

 $H = H_{\nu - \nu}$

$$\omega_{\rm f} \sim \sqrt{2} G_{\rm F} n_{\nu} \sim \mathcal{O}(1) \,\mathrm{m}^{-1}$$

 Short conversion lengthscale almost promptly ·High energy u_{χ} and low energy $u_{
m e}$ may exchange each other, then heating rate, explosion dynamics, nucleosynthesis may be influenced.

Collective neutrino oscillation

- · Realistic astrophysical setting with sufficient resolution is difficult to solve
 - Solve QKE directly in idealized setting

Quantum kinetic equation (QKE) describes the collective neutrino oscillation

Analyze linearized QKE with astrophysical simulation results (postprocess)

Nagakura+(2019)

Zaizen & Morinaga (2021)

Linear analysis of QKE

$$i\frac{\mathrm{d}}{\mathrm{d}t}J(\Omega) = -\int \frac{\mathrm{d}^2\Omega'}{4\pi} G(\Omega')\hat{p}\cdot\hat{p}'J(\Omega')$$

linearized QKE

 $G(\Omega) = \sqrt{2}G_{\rm F} \left[\frac{E^2 dE}{2\pi^2} (f_{\nu_{\rm e}}(p) - f_{\bar{\nu}_{\rm e}}(p)) \right] : \text{Electron neutrino Lepton Number (ELN)}$ (Assuming the same population for

Fast flavor conversion is considered • • ELN is important to see the behavior: ELN zero crossing <=> flavor instability (Pf. Morinaga 2021) • Search for ELN crossing!

$i\frac{\mathrm{d}}{\mathrm{d}t}\rho(p) = [H,\rho(p)]$

QKE

(Assuming the same population for heavy-lepton type ν 's)

Boltzmann neutrino transport

Core-collapse supernova simulation with Boltzmann equation solver for neutrino transport

- No artificial approximation
- Distribution function is useful to investigate collective neutrino oscillation -
- Core-collapse simulations under 2D axisymmetry (but see lwakami+(2020) for 3D) •

(remember Akaho-kun's talk)

ELN crossing search with Boltzmann

Steady state Boltzmann Cross above PNS •

 $t_{pb} = 190 \text{ ms } \Gamma$ 1020r [km] Delfan Azari+(2020) Dynamical Boltzmann Cross near PNS

1.20.80.60.4 0.230

 $\sigma \sim \sqrt{-\left(\int_{G(\Omega)>0} \frac{\mathrm{d}\Omega}{4\pi} G(\Omega)\right) \left(\int_{G(\Omega)<0} \frac{\mathrm{d}\Omega}{4\pi} G(\Omega)\right)}$

Morinaga+(2021)

- Dynamical Boltzmann
- Approx. groth rate
- Instability in preshock

- Type I & II crossing
- Type II-1: neutrino absorption

- Type II-2: asymmetric (anti)neutrino emission by asymmetric Ye distribution around PNS

Rotating CCSN simulation by Boltzmann

- - Setup

•

- 15 Mo progenitor (Woosley et al. 2002, commonly used)

- Rotational velocity imposed at the onset of collapse

• Explosion/failure is still unclear (not the topic here)

· Run a rotating core-collapse supernova simulation with Boltzmann neutrino transport \rightarrow Evaluate the linear growth rate from approximate formula

$$\sigma \sim \sqrt{-\left(\int_{G(\Omega)>0} \frac{\mathrm{d}\Omega}{4\pi} G(\Omega)\right) \left(\int_{G(\Omega)<0} \frac{\mathrm{d}\Omega}{4\pi} G(\Omega)\right)} \int_{G(\Omega)<0} \frac{\mathrm{d}\Omega}{4\pi} G(\Omega)$$

- Furusawa—Togashi nuclear EOS (variational method + NSE composition)

- Standard neutrino reaction + updated electron capture rate on nuclei

4 rad/s

 $v^{\phi}(r) = \frac{1}{1 + (r/1000 \,\mathrm{km})^2}$

Linear growth rate

Spatial distribution of the linear growth rate at ~200 ms postbounce Linear growth rate

$$\sigma \sim \sqrt{-\left(\int_{G(\Omega)>0} \frac{\mathrm{d}\Omega}{4\pi} G(\Omega)\right) \left(\int_{G(\Omega)<0} \frac{\mathrm{d}\Omega}{4\pi} G(\Omega)\right)}$$

 Islands of flavor instability
 (outer unstable region is found by Morinaga et al. 2020)

Comparison with non-rotating simulation

Instability islands only appear in the rotating model \rightarrow Rotational origin

ELN angular distribution

 θ^{\times}

- · $\bar{\nu}_{e}$ dominates in radial direction \rightarrow Type II crossing
- Neutrino absorption causes crossing

table region Type II crossing ng

$\nu_{\rm e}$ dominates

× rotation

al_x $\bar{\nu}_e$ dominates

Outgoing distribution function

Energy-integrated distribution function for outgoing $\nu_{\rm e}$ are absorbed faster than $\bar{\nu}_{\rm e} \rightarrow$ ELN crossing Collision term for the Boltzmann eq. = $-(f - f_{FD})/\lambda_{mfp}$

Outgoing distribution function

Collision term for the Boltzmann eq. $= - (f - f_{\rm FD})/\lambda_{\rm mfp}$ · Larger absorptivity for ν_e than $\bar{\nu}_e$

Outgoing distribution function

Collision term for the Boltzmann eq. = $-(f - f_{FD})/\lambda_{mfp}$ $f_{\rm FD}$ for $\nu_{\rm e}$ and $\bar{\nu}_{\rm e}$ are inverted $\rightarrow \nu_{\rm e}$ are strongly absorbed

Distribution along stable direction

insufficient

ELN dose not cross zero along orange arrow Situation is similar to equator, but absorption is

Rotational deformation of matter

Matter distribution is oblate owing to rotation Large-absorptivity region extends more along green · Equatorially flying u_e are absorbed for longer time

Relatively small alpha parameter

- crossing
- In the rotation-induced ELN crossing, alpha is ~0.7
- · Flux factor for $\bar{\nu}_e$ is much larger than $\nu_e
 ightarrow \bar{\nu}_e$ is more forwardpeaking

· Alpha parameter $\alpha := n_{\bar{\nu}_{o}}/n_{\nu_{o}}$ exceeding ~0.8 is an indicator of ELN

Ć

Island structure

ELN dose not cross zero along blue arrow Cross of $f_{\rm FD}$ recedes to smaller radius

Island structure

•

- which determines $f_{\rm FD}$
- Fluid velocity (magenta arrows) shows
 - convective overturn
- Electron-rich matter is carried by matter and • intersects the unstable region to make islands

High-Y_e increases degeneracy parameter

$$\eta = \frac{\mu_{\nu}}{T} = \frac{\mu_{\rm e} + \mu_{\rm p} - \mu_{\rm n}}{T}$$

Summary

- instability is estimated
- time, absorption-induced Type II ELN crossing occurs
- island structure

Using the Boltzmann CCSN simulation, the linear growth rate of the flavor

Rotation extends matter to equator, neutrino absorption continues long • Electron-rich convective inflow intersects the unstable region to make the

Thank you for listening!