2022.01.07 第8回ニュートリノ研究会: "Wakefield Acceleration in a Jet from a NDAF around a BH" Yoshiaki Kato (RIKEN)

Wakefield Acceleration in a Jet from a NDAF around a BH

NDAF = Neutrino Driven Accretion Flow

Merging NS-NS

APS/**Alan Stonebraker**, adapted from simulations by NASA/AEI/ZIB/M. Koppitz and L. Rezzolla

Taken from an article on October 16, 2017 Physics 10, 114 by Maura McLaughlin

Yoshiaki Kato (RIKEN) Toshikazu Ebisuzaki (RIKEN) Toshiki Tajima (UC Irvine)

Collapsing massive stars

National Science Foundation, Attribution, via Wikimedia Commons

Astrophysical Wakefield Acceleration

Ebisuzaki & Tajima 2014; Tajima, Nakajima, and Mourou 2017; Ebisuzaki & Tajima 2019

RIKEH

Wake acceleration

Prof. Tajima's lecture "Plasma Accelerator Physics" (PHY249) at UCI

4 / 20

Yuan+2021

Bow wake and stern wake Nature (or mother duck) shows us.

2022.01.07 第8回ニュートリノ研究会: "Wakefield Acceleration in a Jet from a NDAF around a BH" Yoshiaki Kato (RIKEN)

Laser wakefield acceleration

Prof. Tajima's lecture "Plasma Accelerator Physics" (PHY249) at UCI

Analytical Solution of NDAF disks

Previous studies: Popham+1999; Di Matteo+2002; Kawanaka+2013

- Standard Accretion Disk Model (Shakura & Sunyaev1973) $\dot{M} = -2\pi \varpi \Sigma(\varpi) v_{\varpi}(\varpi) = \text{const.}, \qquad Q_{\text{vis}}(\varpi) = \frac{3\dot{M}}{4\pi} \Omega_{\text{K}}^{2}(\varpi).$ $\dot{M} \varpi^{2} \Omega_{\text{K}}(\varpi) = -2\pi \varpi^{2} S_{\varpi\varphi} + \text{const.}, \qquad \mathcal{F}_{\nu}(\varpi) = Q_{\nu}(\varpi)/2 = \frac{3\dot{M}}{8\pi} \Omega_{\text{K}}^{2}(\varpi). \qquad \epsilon_{0}(\varpi) = \frac{3}{4} \frac{\mathcal{F}_{\nu}(\varpi)}{c} \bar{\kappa}_{\nu}(\varpi) \Sigma(\varpi)$
- Energy density and temperature (Di Matteo+ 2002)

$$\epsilon_0(\varpi) = (11/4)aT_0^4(\varpi) + (7/8)aT_0^4(\varpi) = (29/8)aT_0^4(\varpi)$$

• Rosseland mean opacity of neutrino (Bahcall 1964)

$$\bar{\kappa}_{\nu}(\varpi) = \kappa_{\nu 0} \left(\frac{k_{\rm B} T_0(\varpi)}{m_{\rm e} c^2}\right)^2 \quad \text{where } \kappa_{\nu 0} = 5.22 \times 10^{-20} \,\text{cm}^2 \text{g}^{-1} \text{ for } k_{\rm B} T_0(\varpi) \gg m_{\rm e} c^2$$

• Magnetic field strength is determined by plasma-β

$$\beta \equiv p_0(\varpi)/p_{0,\text{mag}}(\varpi)$$

8 / 20

Properties of NDAFs

Magnetic field strength

$$B_{0}(\varpi) = \left(\frac{8\pi}{3\beta}\right)^{1/2} \left(\frac{58\pi^{3}am_{e}^{4}c^{10}}{\alpha^{2}\kappa_{\nu0}^{2}k_{B}^{4}}\right)^{1/6} \Omega_{K}^{1/3}(\varpi)$$

= $1.95 \times 10^{16} \left(\frac{\beta}{10}\right)^{-1/2} \left(\frac{\alpha}{0.1}\right)^{-1/3} \left(\frac{M}{M_{\odot}}\right)^{-1/3} \left(\frac{\varpi}{r_{s}}\right)^{-1/2} [G].$

Neutrino luminosity

$$L_{\nu} = \int_{\varpi_{\rm in}}^{\infty} 2\mathcal{F}_{\nu}(\varpi) 2\pi \varpi d\varpi = \frac{3\dot{M}}{2} \frac{GM}{\varpi_{\rm in}} = \frac{1}{4} \dot{M}c^2$$
$$= 4.47 \times 10^{53} \left(\frac{\dot{M}}{\dot{M}_{\odot}}\right) \,[{\rm erg\,s^{-1}}].$$

Our model is consistent with Kawanaka+2013

•

Neutrino spectra of NDAF disks

Magnetic tower

Lynden-Bell 1996; Kato, Mineshige, and Shibata 2004

11/20

Properties of jets at the base

- $$\begin{split} & \text{Magnetic field strength at the base} \\ & B_0(\varpi) = \left(\frac{8\pi}{3\beta}\right)^{1/2} \left(\frac{58\pi^3 a m_{\rm e}^4 c^{10}}{\alpha^2 \kappa_{\nu 0}^2 k_{\rm B}^4}\right)^{1/6} \Omega_{\rm K}^{1/3}(\varpi) \\ & = 1.95 \times 10^{16} \left(\frac{\beta}{10}\right)^{-1/2} \left(\frac{\alpha}{0.1}\right)^{-1/3} \left(\frac{M}{\rm M_{\odot}}\right)^{-1/3} \left(\frac{\varpi}{\rm r_s}\right)^{-1/2} [\rm G]. \end{split}$$
- Neutrino luminosity

$$L_{\nu} = \int_{\varpi_{\rm in}}^{\infty} 2\mathcal{F}_{\nu}(\varpi) 2\pi \varpi d\varpi = \frac{3\dot{M}}{2} \frac{GM}{\varpi_{\rm in}} = \frac{1}{4} \dot{M}c^2$$
$$= 4.47 \times 10^{53} \left(\frac{\dot{M}}{\dot{M}_{\odot}}\right) \,[{\rm erg\,s^{-1}}].$$

- Luminosity of EM wave pulses $L_{\text{wave}} = \int_{\varpi_{\text{in}}}^{\infty} 2\mathcal{F}_{\text{wave}}(\varpi) 2\pi \varpi d\varpi = \frac{\dot{M}}{\alpha} \left(\frac{2}{\beta^3}\right)^{1/2} \left(\frac{GM}{\varpi_{\text{in}}}\right) = \left(\frac{1}{18\alpha^2\beta^3}\right)^{1/2} \dot{M}c^2$ $= 1.33 \times 10^{53} \left(\frac{\beta}{10}\right)^{-3/2} \left(\frac{\alpha}{0.1}\right)^{-1} \left(\frac{\dot{M}}{\dot{M}_{\odot}}\right) \text{ [erg s}^{-1}\text{]}.$
- The wakefield strength parameter

Ebisuzaki & Tajima 2014

$$E_0(\varpi) = \sqrt{\frac{4\pi \mathcal{F}_{\text{wave}}(\varpi)}{c}}$$

the amplitude of the vector potential

$$A_0 \equiv c E_0(\varpi) / \omega$$

$$a_0 = eA_0/m_{\rm e}c^2$$

Properties of jets

Radius of the jet has either a parabolicshape or a conical-shape

$$R(\varpi_0, z) = \varpi_0 \left[1 + \left(\frac{z}{\varpi_0} \right)^{\phi} \right]$$

Area of the jet

$$\mathcal{A}(z) = \pi R^2(\varpi_0, z)$$

- Magnetic field strength $B(z) = B_0 \mathcal{A}(0) / \mathcal{A}(z).$
- Number density

 $L_{\text{kinetic}} = n_{\text{p}} \mu m_{\text{p}} c^3 \Gamma^2 \mathcal{A}(z) = \xi L_{\nu} \qquad \xi = 0.1.$ we set $\Gamma = 200$ is the jet bulk Lorentz factor (Ghirlanda et al. 2018)

- The wakefield strength parameter $a(z) = a_0 \sqrt{\mathcal{A}(0)/\mathcal{A}(z)} \gg 1.$
- Propagation region

 $\omega_{
m p}/\omega > 1$: overdense $\bar{\omega^2} = \omega_{
m p}^2 + \bar{k^2}c^2$ $\omega_{
m p}/\omega < 1$: under-dense

> the generation of wakefield by EM wave pluses 13 / 20

The wakefield acceleration in the jets

Kato, Ebisuzaki, & Tajima in prep.

Maximum energy gained for a proton

16 / 20

•

 $\alpha = 0.1, \beta = 10$ log₁₀ Acceleration time duration [s]

5

 $W_{\rm max} = 10^{24} \, {\rm eV}$

 $W_{\rm max} = 10^{22} \, {\rm eV}$

 $W_{\rm max} = 10^{20} \, {\rm eV}$

 $W_{\rm max} = 10^{18} \, {\rm eV}$

1.5

2.0

Observational signatures which could have been detected in the future

- Charged particles < 10¹⁴ eV can be generated less than a picosecond (< 10⁻¹² s)
 - A plausible source of gammaray emissions ~ 1 MeV via synchrotron radiation
- Protons of 10^{16 20} eV can be generated less than a microsecond (< 10⁻⁶ s)
 - A possible source of 10¹⁴ eV neutrinos via pion-production though photo-meson interaction (Waxman & Bahcall 1997)

ובאוה

Fluxes of Cosmic Rays

Prof. Tajima's lecture "Plasma Accelerator Physics" (PHY249) at UCI

Summary

- We have demonstrated that the wakefield acceleration in the jets from NDAF as a model of GRBs.
- The wakefield acceleration postulates various observational signatures:
 - ✓ The time-variability of neutrino emissions < 100 MeV (peak ~ 20 MeV) from NDAF disks may discriminate the nature of generation of EM wave pulse,</p>
 - ✓ The tracing of gamma-ray emission from high energy electrons and subsequent burst of ~ 10¹⁴ eV neutrinos may disclose the onset of the wakefield acceleration,
 - ✓ The detection of the extremely high energy cosmic rays (EHECRs) of 10²¹⁻²² eV and super-EHECRs of 10²²⁻²³ eV within several hours after both gamma-ray emissions and neutrino bursts could be a smoking gun for the astrophysical wakefield acceleration.
- The wakefield acceleration will be a key player for the multimessenger astronomy.

