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超新星ニュートリノの特徴的なフェイズ
The Astrophysical Journal Supplement Series, 205:2 (17pp), 2013 March Nakazato et al.

Figure 14. Time evolution of neutrino luminosity and average energy (left) and number spectrum of ν̄e (right) from νRHD and PNSC simulations with the
interpolation (13) for the model with (Minit, Z, trevive) = (13 M!, 0.02, 100 ms). In the left panel, solid, dashed, and dot-dashed lines represent νe , ν̄e , and νx

(dot-dashed lines), respectively. In the right panel, the lines correspond, from top to bottom, to 0.1, 0.25, 0.5, 2, 4, and 15 s after the bounce.
(A color version of this figure is available in the online journal.)

and shock revival time trevive are compared in Figure 13. The
luminosity and average energy are higher for the models with
larger neutron star mass Mg,NS (see also Figure 11), though the
difference is not so large.

With inequalities (9) and (10), we construct the light curve
models of neutrinos. For this, we introduce a fraction factor of
the accretion term to its maximum, f (t), as a function of time:

F acc
νi

(E, t) = f (t) F acc,max
νi

(E, t). (11)

While f (t) may also depend on the species and energy of
neutrino, we ignore their dependences for simplicity. It is
required for f (t) to satisfy f (t) ∼ 1 for the early phase
(t ∼ 100 ms) and f (t) = 0 for the phase after the explosion.
Using f (t), the neutrino flux is expressed as

Fνi
(E, t) = f (t) F acc,max

νi
(E, t) + F cool

νi
(E, t)

= f (t) F νRHD
νi

(E, t) + (1 − f (t)) F PNSC
νi

(E, t).
(12)

The details of explosion dynamics would determine the function
f (t). For instance, a neutrino signal of the early explosion model
corresponds to a rapidly decaying f (t) and a small neutron star
mass Mg,NS. On the other hand, slowly decaying f (t) and large
Mg,NS give a neutrino signal of the late explosion model.

When supernova neutrinos are actually detected, this study
would help us to probe the nature of progenitor and remnant. As
discussed above, the neutrino luminosity in the accretion phase
(∼100 ms after the neutronization burst) is determined by the
progenitor model especially for the density profile. The signals
in the cooling phase (∼10 s after the neutronization burst) would
provide hints for the mass of remnant neutron star. Moreover,
if the transition from the accretion phase to the cooling phase
is observed, a restriction for the explosion mechanism may be
possible. Our results can hopefully be utilized as immediately
comparable templates for a neutrino detection.

One may be able to use our results for modeling the supernova
neutrino signals. In Figure 14, we demonstrate examples of the

Figure 15. Time evolutions of neutrino luminosity and average energy of νe for
the model with (Minit, Z) = (13 M!, 0.02). Thick dashed and thick dot-dashed
lines represent the interpolations (13) with trevive = 100 ms and trevive = 300 ms,
respectively. Thin solid lines show the results of νRHD and thin dashed and thin
dot-dashed lines represent the results of PNSC simulations with trevive = 100 ms
and trevive = 300 ms, respectively.
(A color version of this figure is available in the online journal.)

neutrino light curve and spectrum. They are drawn under the
assumption,

f (t) =
{

1, t ! trevive + tshift,

exp
(
− t−(trevive+tshift)

τdecay

)
, trevive + tshift < t,

(13)

for the model with (Minit, Z, trevive) = (13 M!, 0.02, 100 ms).
The junctions of this interpolation are shown in Figure 15. Since
f (t) corresponds to the fraction of mass accretion rate to its
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ü バーストフェイズ
衝撃波発⽣
中性⼦化バースト（νe）

ü 降着フェイズ
衝撃波停滞
継続的な質量降着

ü 冷却フェイズ
衝撃波膨張
中⼼への降着弱まる

爆発に失敗しBHを形成する場合,
光度や平均エネルギーは⾼く
継続時間は短くなる.



1D/2D/3D超新星モデルからのニュートリノ

SN 1987A モデル, LS220 EOS
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1D/2D/3D超新星モデルからのニュートリノ

SN 1987A モデル, LS220 EOS
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1D/2D/3D超新星モデルからのニュートリノ

SN 1987A モデル, LS220 EOS
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1D/2D/3D超新星モデルからのニュートリノ

SN 1987A モデル, LS220 EOS

ニュートリノ光度

νe , νe : 2Dモデルが早く衝撃波復活→降着率減少（2D<3D）.
2DモデルではSASIや強く⾮定常な降着流→時間変動.

νx : ほとんど差異なし.
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1D/2D/3D超新星モデルからのニュートリノ

SN 1987A モデル, LS220 EOS

ニュートリノ光度 平均エネルギー

νe , νe : 2Dモデルが早く衝撃波復活→降着率減少（2D<3D）.
2DモデルではSASIや強く⾮定常な降着流→時間変動.

νx : ほとんど差異なし.

2Dと3Dよく似ている.
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超新星ニュートリノのEOS依存性

SN 1987A モデル, 2D
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超新星ニュートリノのEOS依存性
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ここまでのまとめ

超新星の数値モデルが予⾔するニュートリノは

ü 1Dモデルと2D/3Dモデルで異なる（87Aモデルの場合ΔLνe~10%, ΔEνe~2MeV）.

ü 2Dモデルと3Dモデルは似ている（衝撃波の振る舞いに起因する差がある）.

ü EOS依存性あり（87Aモデルの場合ΔLνe~10%, ΔEνe~1-2MeV）.

（EOSは将来的に理解が進むとして）
超新星ニュートリノを調べるには3Dではなく2Dで⼗分…なのか？

ü 2D/3Dモデルで衝撃波復活のタイミングや爆発する/しないが異なる.

ü ニュートリノ放射の⾓度依存性も異なる.



系統的2D超新星モデル
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Fig. 1. Mass distribution of some selected models at a pre-collapse stage (top panel) and at the time of
core bounce (bottom).

ξM ≡ M/M!

R(M)/1000km
. (1)

The previous studies used M = 2.5 M! (O’Connor & Ott 2011; Ugliano et al. 2012) or 1.75 M!

(O’Connor & Ott 2013) and estimated ξM at the time of core bounce. On the other hand, the

outer radius of our computational domain (5000 km) is too small to contain 2.5 M! for all

models and even 1.75 M! for some less massive models (see Figure 1). In this paper, we estimate

ξM at M = 2.0 and 2.5 M! (ξM = ξ2.0, ξ2.5) directly from the progenitor models. It should be

noted that our definition of ξ2.5 gives almost the same value as the compactness estimated at

bounce, because the radius R enclosing 2.5 M! is far from the center and the radial velocity

vR there is very small (e.g., for s15.0 model, R = 1.7×109 cm and vR =−6.8×106 cm s−1). By

comparing the top to bottom panel of Figure 1, the position of the outer envelope (>∼ 108 km)

changes very slightly. This is because of the long dynamical time scale there compared to the

short time period before bounce (∼ 200 ms). Actually ξ2.5 of s15.0 model in our definition is

0.149, which is very close to the value (0.150) estimated by O’Connor & Ott (2011) at bounce.
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2Dモデルを⽤いた系内超新星の内部構造予測
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最初の50msと少し後（例えば200-250ms）の検出イベント数の⽐をとることで
超新星親星のコンパクトネスを推測できる.



2Dモデルを⽤いた超新星背景ニュートリノ予⾔
DSNB from extensive core-collapse simulations 7
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Figure 5. Same as Figure 3 but for failed explosions. Note the
di↵erent ranges in both horizontal and vertical axes. From small
to large compactness, points represent the solar metal 40M�
of WHW02, solar metal 25M� of WHW02, zero metal 33M�
of WHW02, zero metal 35M� of WHW02, solar metal 40M�
of WW95, solar metal 40M� of WW95 updated in Heger et
al. (2001), and low metal 30M� of Nakazato et al. (2013). Spec-
tral shape parameter are shown only when relevant information
was available. Straight lines are linear fits through the spectral
parameters.

tion 2.3, the shape parameter is particularly sensitive to the
details of included microphysics.

We next repeat the exercise for collapse to black holes,
shown as solid symbols in Figure 5. For these, the time in-
tegral is performed until the moment of black hole forma-
tion. For consistency, we collect simulations from the liter-
ature that adopt a LS EOS with K = 220 MeV. Hempel
et al. (2012) simulated the collapse of the solar metallic-
ity 40M� star of WW95 updated in Heger et al. (2001),
whose ⇠2.5 ⇡ 0.59. Nakazato et al. (2013) followed black hole
formation in their low metal 30M� progenitor, whose com-
pactness is ⇠2.5 ⇡ 0.74 (private communication). Hudepohl
(2014) simulated the collapse of the solar metal 25M� and
40M� progenitors of WHW02, with compactness ⇠2.5 ⇡ 0.31

and ⇠2.5 ⇡ 026, respectively.
To this list we add simulations of the solar metallicity

40M� star of WW95 with ⇠2.5 ⇡ 0.55 (note the di↵erent
compactness from the version updated in Heger et al. 2001),
as well as the 33M� and 35M� zero-metallicity progenitors
of WHW02 with ⇠2.5 ⇡ 0.39 and 0.52, respectively. Due to
the limited number of black hole forming collapse simula-
tions, we fit the neutrino spectral parameters by a linear
function of ⇠2.5, separately for ⌫e, ⌫̄e, and ⌫x . These are
shown by the solid lines in Figure 5. We find the neutrino
energetics tend to decrease with compactness, which can be
understood by the fact larger compactness progenitors have
shorter durations for black hole formation; it is well approx-
imated as / ⇠�3/2 (e.g., O’Connor & Ott 2011). Although

the shorter duration is partially compensated by higher lu-
minosities, the duration dominates the overall e↵ect. The
neutrino mean energies show a flat (for ⌫e and ⌫̄e) or rise
(for ⌫x) with compactness. The rise in ⌫x mean energy is
the hallmark signature of black hole formation: the rapid
mass accretion increases the protoneutron star density and
temperature, which is reflected in ⌫x ; the other flavors by
comparison have larger neutrinosphere radii and are less af-
fected. For example, the ⌫e, ⌫̄e, and ⌫x neutrinosphere radii
are 60, 58, and 30 km for the neutrino energy of 34 MeV at
400 msec after bounce in the case of 35M�. The protoneu-
tron star radii shrinks to ⇠30 km (⇢ > 10

10 g/cm3) by this
time. The shape parameter shows a weak tendency to in-
crease with compactness, which can be understood by the
decrease of duration time with compactness. This is because
the shape parameter has initially high values and a plateau
of low values in the late phase, so shorter duration time re-
sults in larger values of the time-integrated shape parameter.

3.2 IMF-weighted average neutrino spectrum

The average neutrino spectrum per core collapse, dN/dE,
can be derived by evaluating the contribution of a given pro-
genitor by the initial mass function (IMF). Since the IMF
falls steeply with progenitor mass, contributions from lower
mass progenitors become important. We use the ZAMS mass
bins used in WHW02, which runs from 10.8M� to 75M�.
Progenitors with initial masses below this range evolve and
collapse as ONeMg cores (Jones et al. 2013), and is an
important population of the DSNB (e.g., Mathews et al.
2014). We include this population based on the long-term
core-collapse simulation of Hudepohl et al. (2010) who used
the 8.8M� progenitor of Nomoto (1984, 1987). The time-
integrated neutrino spectral parameters (not shown in Fig-
ure 3) are (E tot

⌫ , hE⌫i, h↵i) = (2.07, 8.05, 2.53), (2.08, 9.13, 1.89),
and (2.32, 9.83, 1.43) for ⌫e, ⌫̄e, and ⌫x , respectively, in the
same units are shown in Figure 3. For progenitors above
75M� we extend the 75M� mass bin to 100M�.

The average neutrino spectrum is then obtained as,

dN
dE
=
’
i

Ø
�Mi

 (M)dMØ
100

8
 (M)dM

fi(E) , (13)

where �Mi is the mass range of mass bin i,  (M) = dn/dM
is the IMF, and fi(E) is the spectrum as defined in Eq. (12)
with neutrino spectral parameters (E tot

⌫ , hE⌫i, h↵i) for the
core collapse of a progenitor of mass Mi . Since we charac-
terize the spectral parameters in compactness, yet the abun-
dance of progenitors is determined by its ZAMS mass, we re-
quire knowledge of the distribution of compactness in mass,
⇠(M). We adopt the distribution from the pre-supernova
models of WHW02, but explore other possibilities later.
Finally, we adopt a Salpeter IMF with  (M) / M⌘ with
⌘ = �2.35 in the mass range 8–100M�, but explore a liberal
range from �2.15 to �2.45 (Bastian et al. 2010) in our final
calculations.

The resulting average DSNB flux is shown by the solid
curves in Figure 6, for the ⌫̄e (top panel) and ⌫x (bottom
panel). The average ⌫̄e spectrum can be well modeled by the
pinched Fermi-Dirac spectral function with total energetics
4.3⇥ 10

52 erg, mean energy 14.6 MeV, and shape parameter
3.3. The ⌫x depends on the assumed shape parameter. In

MNRAS 000, 1–14 (2016)
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Figure 3. Neutrino emission parameters for 2D simulations: to-
tal energetics (upper panel), mean energy (middle panel), and
shape parameter (lower panel) shown for ⌫e (red circles), ⌫̄e (blue
squares), and ⌫x (black diamonds). Each point is a core-collapse
simulation, plotted at the value of the progenitor compactness
⇠2.5.

(2016). Since the high energy component of the neutrino
distribution is essential to determine the shape parameter,
the inclusion of improved neutrino reactions such as inelas-
tic scatterings on nucleons and nuclei, which contribute to
down-scattering of high energy neutrinos, is important for
the detailed prediction of the neutrino spectra.

3 DSNB PREDICTION AND DETECTION

3.1 Characterizing the neutrino emission

For each 2D core-collapse simulation, we estimate the to-
tal energy liberated in the form of neutrinos and the flux-
weighted mean neutrino energy as,

E tot
⌫ =

π
L⌫(t)dt , (10)

hE⌫i =

Ø
E⌫(t) €N⌫(t)dtØ €N⌫(t)dt

, (11)

where €N⌫ = L⌫/E⌫ . The time integrals are performed until
100 sec post bounce. We obtain the spectral shape parameter
h↵i by fitting the time-summed neutrino spectrum to the
pinched Fermi-Dirac functional form (Keil et al. 2003),

f (E) = (1 + h↵i)(1+h↵i)
�(1 + h↵i)

E tot
⌫ E h↵i

hE⌫i2+h↵i
exp


�(1 + h↵i) E

hE⌫i

�
, (12)

where hE⌫i is fixed to the flux-weighted average neutrino
energy, Eq. (11). This yields a better spectral fit than us-
ing a flux-weighted shape parameter analogous to the mean
energy of Eq. (11).

Figure 3 shows the spectral parameters (E tot, hE⌫i, h↵i)
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Figure 4. The same as Figure 3 but showing in bold filled sym-
bols the time-integrated spectral parameters for the simulations
of Summa et al. (2016).

separately for ⌫e, ⌫̄e, and ⌫x , plotted as functions of the com-
pactness ⇠2.5 of the progenitor. The total neutrino energet-
ics show a clear increase with the progenitor compactness,
consistent with previous studies: high compactness leads to
higher mass accretion rate, which leads to larger gravita-
tional energy liberation and hence higher neutrino energet-
ics (Nakamura et al. 2015). We also see a clear hierarchy in
the total energetics in neutrino flavor, ⌫x < ⌫̄e < ⌫e. The ⌫e
is largest due to the additional contribution from the delep-
tonization of the progenitor core. For mean energy, a mild
increase with compactness is evident. We also see the usual
hierarchy with ⌫e being the lowest and ⌫x being the high-
est. The shape parameter h↵i shows little variation between
di↵erent compactness or flavor, consistently falling between
3 to 4. As noted in section 2.2, we do not determine h↵i
for ⌫x due to limitations in our simulation setup. However,
as discussed in section 2.3, we expect it to be smaller than
the values for ⌫e or ⌫̄e, and we will explore values between
1.0–4.0 in this paper.

In Figure 4 we plot on the same data the time-integrated
spectral parameters for the 18 2D core-collapse simulations
of Summa et al. (2016). The same qualitative trends are
observed. For example, the hierarchy in the mean energy
and alpha with neutrino species is observed. Most impor-
tantly, the same trends with compactness are observed: rise
in the total neutrino energetics, mild increase in neutrino
average energies, and weak dependence for the shape pa-
rameter. The flavor hierarchy of the total energetics is more
modest in the Summa et al. (2016) models by construction:
since the Summa et al. (2016) simulations terminate earlier
and we assume the gravitational binding energy liberated
in the late-phase is equipartitioned in neutrino species. One
notable di↵erence is seen in the systematically lower shape
parameters. This is not surprising since as discussed in Sec-
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the lower panel, a shape parameter of 3.0 is assumed, but
we will explore values in the range 1.0–4.0 in later sections.

The contribution from collapse to black holes is intro-
duced by considering a critical compactness, ⇠2.5,crit, above
which progenitors are assumed to collapse to black holes.
While this is a simplistic picture of a complex phenomenon,
our prescription is motivated by various studies showing
that large compactness is conducive to black hole formation
(e.g., O’Connor & Ott 2011). In general, the precise value
of ⇠2.5,crit will depend on the explosion mechanism and their
implementation. For the neutrino mechanism, current im-
plementations suggest values between 0.2–0.6 (O’Connor &
Ott 2011; Ugliano et al. 2012; Horiuchi et al. 2014; Pejcha &
Thompson 2015; Ertl et al. 2016). However, ongoing e↵orts
are expected to update predictions in the future. We thus
treat ⇠2.5,crit as a parameter of interest that is predicted by
simulations and to be tested by future observational data.
For the neutrino emission of failed explosions, we adopt the
functional form Eq. (12) with neutrino spectral parameters
predicted by black hole forming simulations (Figure 5).

The predicted weighted average neutrino spectrum in-
cluding contributions from collapse to black holes are shown
as non-solid lines in Figure 6. Four values of ⇠2.5,crit = 0.1,
0.2, 0.3, and 0.43 are shown. Based on the solar metallicity
progenitors of WHW02, these critical values correspond to
failed explosion fractions (the number of failed explosions
over the total number of massive stars in the mass range
8–100M�) of 45%, 17%, 5%, and 0%, respectively. Note that
the largest compactness in the WHW02 solar metallicity
stellar suite is ⇠2.5 ⇡ 0.43. Therefore, values of ⇠2.5,crit above
0.43 means no contribution from collapse to black holes in
our calculations.

The resulting spectra are the combined e↵ect of failed
explosions having lower neutrino total energies and higher
mean energies than the 2D counterparts. The smaller the
critical compactness, the larger the contribution from failed
explosions, and thus the more prominent is the high-energy
component of the mean neutrino spectrum. Adopting a
shallower (steeper) IMF increases (decreases) the empha-
sis on the most massive stars. For example, compared to the
Salpeter IMF, a slope of �2.15 implies ⇠ 30% larger repre-
sentation of the most massive stars M > 40M�. However,
the most massive stars are rare and the increase is mod-
est in absolute terms. Even for the shallow �2.15 slope and
largest failed fraction (⇠2.5,crit = 0.1), the weighted average
neutrino spectrum is only a↵ected at the few percent level
below neutrino ⇠ 30 MeV and ⇠ 15% above ⇠ 60 MeV.

The core compactness of massive stars has recently
been carefully investigated by Sukhbold & Woosley (2014)
using one-dimensional stellar evolution codes. They show
that quantitatively, the compactness of a star depends on a
range of inputs, including not only the initial stellar mass
and metallicity, but also the way mass loss and convec-
tion is handled in the code, as well as the nuclear micro-
physics implementation. However, the authors also show
that qualitatively the compactness robustly follows a non-
monotonic distribution in ZAMS mass, with a peak around
⇠ 20M�. This is the result of the interplay of the carbon-
burning shell with the carbon-depleted core, and later,
oxygen-burning shell with the oxygen-depleted core. Nev-
ertheless, the position of the peak has an uncertainty of
some ⇠ 1M� in mass (Sukhbold &Woosley 2014). To explore
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Figure 6. Weighted average neutrino spectra of ⌫̄e (top panel)
and ⌫x (bottom panel), based on 101 2D core-collapse simulations
and a collection of simulations of collapse to black holes. The rel-
ative contributions from neutron star and black hole scenarios
are determined by the critical compactness, ⇠2.5,crit; progenitors
with compactness ⇠2.5 > ⇠2.5,crit are assumed to collapse to black
holes. For reference, the fraction of black hole collapses are 45%
(⇠2.5,crit = 0.1), 17% (⇠2.5,crit = 0.2), 5% (⇠2.5,crit = 0.3), and 0%
(⇠2.5,crit = 0.43). Above ⇠2.5,crit = 0.43, there is no black hole con-
tribution.

other currently-available suites of pre-supernova progenitor
models, we determine the average neutrino flux employing
the pre-supernova models of Woosley & Heger (2007). This
suite of progenitors in general has similar or higher com-
pactness compared to WHW02, reaching a peak compact-
ness of ⇠2.5 ⇡ 0.54 compared to 0.43 for WHW02. Also, a
second peak in compactness at ⇠ 40M� is evident, in addi-
tion to the peak around ⇠ 20M� that is seen in WHW02
and Sukhbold & Woosley (2014). These features manifest as
a harder predicted average neutrino spectra, because higher
compactness yields higher neutrino luminosities and mean
energies (Figure 3). In Section 3.4, we show how this a↵ects
the DSNB event rate prediction.

3.3 DSNB flux prediction

The DSNB is determined by integrating the cosmic history
of the comoving core-collapse rate, RCC (z), by the mean neu-
trino spectrum per core collapse, dN/dE, appropriately red-
shifted, over cosmic time (see, e.g., Beacom 2010, for a recent
review),

d�
dE
= c

π
RCC(z)

dN
dE 0 (1 + z)

���� dt
dz

���� dz , (14)

where E 0 = E(1+z) and |dz/dt | = H0(1+z)[⌦m(1+z)3+⌦⇤]1/2.
We include contributions out to a redshift of 5, which is
su�ciently large to include the majority of the DSNB flux
(Ando & Sato 2004) for ⇠ 10 MeV neutrino energy threshold.
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CCSNの空間３次元数値シミュレーション (1)

ü Melson+'15
9.6 Mo progenitor
t < ~400 ms
LS220 EoS
1D gravity + GR correction
Eexp ~ 1050 erg @ tpb=400ms

ü Mueller+ʼ18

衝撃波の復活には空間多次元効果（流体不安定性）が本質的に重要な役割を果たす.
1D計算 → ごく限られた初期条件を除いて爆発しない.
2D計算 → 爆発に成功する数値モデルが多数.
3D計算 → 2D計算と⽐較して爆発しにくい傾向. 衝撃波の復活に成功しても

爆発エネルギーが⼩さい（Eexp << 1051 erg）.

7 small-mass progenitors
CoCoNUT-FMT code
LS220 EoS
Eexp ~ 1-4 x 1050 erg



CCSNの空間３次元数値シミュレーション (2)

ü Bollig+ʼ21
18.88太陽質量の親星モデルを⽤いて3D⻑時間計算を実⾏.
観測値に匹敵する量（Eexp ~ 1051 erg & MNi ~ 0.09太陽質量）を
得ることに成功.

8 R. Bollig, et al.
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treatment applied above T = 0.343 MeV.

Radioactive 56Ni and other elements heavier than 28Si,
which are produced either by explosive burning or alpha-
rich freeze-out, are ejected in the highest concentra-
tions in regions where the shock is strongest (Figure 3),
in agreement with findings of Wongwathanarat et al.
(2013), whereas such a correlation is e↵ectively lost for
28Si and lighter elements (Figure 3). Using the small
network we obtain ejecta masses of 0.29 M� of silicon
and 1.42M� of oxygen. 0.028M� of 56Ni are nucle-
osynthesized during the Prometheus-Vertex run of
M P3D LS220 m� until ⇠1.7 s, increasing to 0.087 M� un-
til ⇠7 s (Figure 4). The e�cient formation of 56Ni under
conditions of alpha-rich freeze-out is enabled because the
electron fraction, Ye, in the neutrino-processed ejecta
varies between 0.50 and ⇠0.52 (Figure 5). Since the ex-
tended run was done with an NSE solver applied to lower
temperatures instead of the network, the 56Ni produc-
tion may be overestimated, as suggested by the discon-
tinuous growth rate of the 56Ni mass after the network-
NSE switch (Figure 4). Our final 56Ni mass is there-
fore an upper limit, and we expect the actual mass to
be around 0.05M�. Nevertheless, it demonstrates that
56Ni masses in the ballpark of those of typical CCSNe
can be ejected in 3D neutrino-driven explosions. The
small ↵-network used in the Prometheus-Vertex run
massively overestimates the yield of 44Ti by up to a fac-
tor of 100 (see also Wongwathanarat et al. 2013). The
continuous growth of the ejected masses of intermediate-
mass elements displayed in Figure 4 mostly reflects the

composition of the stellar shells swept up by the outgo-
ing shock.

3.2. Explosion energy

The blast-wave energy increases continuously from the
onset of the explosion until several seconds later. The
diagnostic energy, Ediag

exp
(which is the integrated inter-

nal plus gravitational plus kinetic energy of all postshock
matter with a positive value of this total energy), e↵ec-
tively saturates at ⇠5 s, whereas the explosion energy
that accounts for the negative binding energy of overly-
ing stellar layers (“overburden”, OB), EOB�

exp
, rises fur-

ther to nearly converge to the diagnostic energy at a
value around 0.98 B at 7.035 s (Figure 1). During all
this time, a “classical” spherically symmetric neutrino-
driven wind does not develop, but the PNS environment
displays turbulent mass flows, because accretion down-
drafts carry matter to locations near the gain radius
(Rg), where the gas absorbs energy from neutrino heat-
ing before it returns back outward to enhance the power
of the explosion (Figure 2). The entropy per baryon in
the outflows stays moderately high (s ⇠ 20–45 kB per
nucleon) and Ye very close to 0.5.

As described by Marek & Janka (2009) and quantified
by Müller (2015) and Müller et al. (2017a), the mass out-
flow rate, Ṁout (for vr > 0), is determined by neutrino
energy deposition, which provides the energy to gravi-
tationally unbind the matter carried to the vicinity of
the PNS in downflows, whereas the long-time growth of
the explosion energy is mainly fueled by the subsequent
recombination energy of free nucleons re-assembling into
↵-particles and heavy nuclei when the downflow mate-
rial expands back outward. The net e↵ect is captured
by relations for the outgoing energy and enthalpy fluxes
(Figure 1):

Fe,out = Ṁout ēout = Ėdiag

exp
⇡ 0.5 Q̇⌫ , (2)

confirming results in Müller et al. (2017a), and

Fh,out = Ṁout h̄out = ĖOB�
exp

⇡ Q̇⌫ . (3)

Here, Ṁout, Fe,out, and Fh,out are defined as in equa-
tions (5), (6), and (7) of Müller (2015), ēout and h̄out

are the total energy and enthalpy per baryon (including
gravitational energy) in outflows, and all of these quan-
tities are evaluated at 400 km. These relations express
energy conservation during the buildup of the explosion
energy. The latter is provided by neutrino energy depo-
sition, which does not only account for the growth of the
positive energy transported by neutrino-heated ejecta
(Ėdiag

exp
in Equation (2)) but also for the energy that is

needed to gravitationally unbind the stellar layers that
are swept up by the propagating shock, an e↵ect that is
included in ĖOB�

exp
in Equation (3). At tpb . 2 s one can

find time intervals when Q̇⌫ exceeds Fh,out ⇠ ĖOB�
exp

.
This indicates that some neutrino energy is deposited
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Figure 1. Explosion dynamics and neutrino emission of model M P3D LS220 m�. Time axes are chosen for optimal visibility.

Top left: Mass-shells with entropy per nucleon color-coded. Maximum, minimum, and average shock radii, gain radius, and

the mass shells of Si/O shell interface and final NS mass are marked. The vertical white line separates Vertex transport (left,

time linear) and HC neutrino approximation (right, time logarithmic). Top right: Average values of shock radius and velocity,

gain radius, and turnaround radius Rret for models M P3D LS220 m� and L P3D LS220 m�. Middle left: Emitted luminosities and

mean energies of ⌫e, ⌫̄e, and a single species of heavy-lepton neutrinos. The time axis is split as in the top-left panel. Middle

right: Explosion energy, diagnostic and without overburden (OB�), and corresponding time derivatives compared to 0.5 and

1.0 of the net neutrino heating rate in the gain layer. At 7 s EOB�
exp is still growing with a rate of ⇠ 0.02 B s�1. Bottom left: Mass

accretion rate in downflows and ejection rate in outflows at 400 km, and ratio ↵ of the mass outflow rates at 400 km and at the

average turnaround radius Rret. Bottom right: Total enthalpy and energy fluxes, Fh,out and Fe,out, in outflows at 400 km and

corresponding mean enthalpy and energy per baryon, averaged over a running window of 25 ms to reduce fluctuation amplitudes.

バウンス後 1.8 秒で
ニュートリノ輸送解法
を簡略化
→
時間発展が不連続に
なっている.

衝撃波の復活には空間多次元効果（流体不安定性）が本質的に重要な役割を果たす.
1D計算 → ごく限られた初期条件を除いて爆発しない.
2D計算 → 爆発に成功する数値モデルが多数.
3D計算 → 2D計算と⽐較して爆発しにくい傾向. 衝撃波の復活に成功しても

爆発エネルギーが⼩さい（Eexp << 1051 erg）.



CCSNの磁場⼊り2D/3D計算

ü Mueller & Varma ʼ20

L2 Müller & Varma
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Figure 1. Evolution of the MHD model (black/blue curves) and the hydro model (red). a) Maximum, minimum (solid) and average shock
radius (dashed), gain radius (dotted), and proto-neutron star radius (dash-dotted). b) Critical time scale ratio ⌧adv/⌧heat. c) Turbulent
kinetic energy Eturb (black) and magnetic energy in the gain region (blue) in the MHD model. d) E�ciency ⌘conv for the conversion of
neutrino heating into turbulent energy kinetic energy (black/red) or total turbulent energy including magnetic fields (blue).

Endeve et al. (2012), though the fields did not become dy-
namically significant in their study. Moreover, conventional
estimates for the field strengths in the cores and inner shells
of massive stars could be too pessimistic. The magnetic field
strengths of 103-109 G in white dwarfs (Ferrario et al. 2015)
may not be indicative of the conditions in massive stars at
the pre-collapse stage, where convective burning could gen-
erate strong small-scale fields via a turbulent dynamo. Con-
sidering ubiquitous observations of magnetic field strengths
close to kinetic equipartition in similar settings (Christensen
et al. 2009; Brun & Browning 2017), one should expect fields
of order 1010-11 G in the innermost active burning shells at
collapse. Here we explore the amplification of such seed fields
by a small-scale dynamo and their interplay with neutrino
heating and the hydrodynamic instabilities in a progenitor
with a moderate rotation rate for the first time in a 3D MHD
simulation with neutrino transport.

2 PROGENITOR MODEL AND INITIAL
CONDITIONS

We simulate the collapse of the 15M� model m15b6 from
Heger et al. (2005), whose evolution up to collapse has been
calculated assuming magnetic torques. The progenitor has
a central rotation rate of 0.05 rad s�1, which translates into
a neutron star birth spin period of 11 ms assuming that the
collapsing core does not exchange angular momentum with
the ejecta during the explosion. The neutron star’s rotational

energy of ⇠2 ⇥ 1050 erg would thus be too small to power a
supernova with normal energy by MHD e↵ects alone.

We perform two simulations with and without magnetic
fields. Following Obergaulinger & Aloy (2017), we assume a
dipolar field geometry given by the vector potential,

(Ar, A✓, A') = (rBt,0(r) cos ✓, 0, r/2 ⇥ Bp,0(r) sin ✓), (1)

in terms of the radius-dependent poloidal and toroidal field
strengths Bp,0 and Bt,0. Realistic seed fields are likely domi-
nated by smaller scales, but in default of better pre-collapse
models, the assumption of a dipolar geometry appears justi-
fied as our findings do not appear to hinge on the large-scale
structure of the field. In order not to overestimate the im-
pact of magnetic fields, we reduce the poloidal and toroidal
field strengths Bp,prog and Bt,prog in the progenitor by a factor

of 104, i.e., Bp,0 = 10�4Bp,prog and Bt,0 = 10�4Bt,prog. In the

progenitor, Bp,prog and Bt,prog reach values of 5 ⇥ 109 G and

106 G in non-convective regions as predicted by the Tayler-
Spruit dynamo (Spruit 2002). Inside convective regions one
expects values of Bp,prog and Bt,prog close to kinetic equipar-
tition, which translates into a plasma beta (defined as the
ratio of thermal to magnetic pressure) of � = 104 for the
typical convective Mach numbers of ⇠10�2 in the innermost
burning shells at collapse (Collins et al. 2018). This would
imply rather strong fields of up to 3 ⇥ 1012 G inside a small
central region of radius 40 km and 6 ⇥ 1010 G in the oxygen
shell, but after rescaling by a factor 10�4, the seed fields can
clearly not play any dynamical role after collapse without
dynamo field amplification.
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Endeve et al. (2012), though the fields did not become dy-
namically significant in their study. Moreover, conventional
estimates for the field strengths in the cores and inner shells
of massive stars could be too pessimistic. The magnetic field
strengths of 103-109 G in white dwarfs (Ferrario et al. 2015)
may not be indicative of the conditions in massive stars at
the pre-collapse stage, where convective burning could gen-
erate strong small-scale fields via a turbulent dynamo. Con-
sidering ubiquitous observations of magnetic field strengths
close to kinetic equipartition in similar settings (Christensen
et al. 2009; Brun & Browning 2017), one should expect fields
of order 1010-11 G in the innermost active burning shells at
collapse. Here we explore the amplification of such seed fields
by a small-scale dynamo and their interplay with neutrino
heating and the hydrodynamic instabilities in a progenitor
with a moderate rotation rate for the first time in a 3D MHD
simulation with neutrino transport.

2 PROGENITOR MODEL AND INITIAL
CONDITIONS

We simulate the collapse of the 15M� model m15b6 from
Heger et al. (2005), whose evolution up to collapse has been
calculated assuming magnetic torques. The progenitor has
a central rotation rate of 0.05 rad s�1, which translates into
a neutron star birth spin period of 11 ms assuming that the
collapsing core does not exchange angular momentum with
the ejecta during the explosion. The neutron star’s rotational

energy of ⇠2 ⇥ 1050 erg would thus be too small to power a
supernova with normal energy by MHD e↵ects alone.

We perform two simulations with and without magnetic
fields. Following Obergaulinger & Aloy (2017), we assume a
dipolar field geometry given by the vector potential,

(Ar, A✓, A') = (rBt,0(r) cos ✓, 0, r/2 ⇥ Bp,0(r) sin ✓), (1)

in terms of the radius-dependent poloidal and toroidal field
strengths Bp,0 and Bt,0. Realistic seed fields are likely domi-
nated by smaller scales, but in default of better pre-collapse
models, the assumption of a dipolar geometry appears justi-
fied as our findings do not appear to hinge on the large-scale
structure of the field. In order not to overestimate the im-
pact of magnetic fields, we reduce the poloidal and toroidal
field strengths Bp,prog and Bt,prog in the progenitor by a factor

of 104, i.e., Bp,0 = 10�4Bp,prog and Bt,0 = 10�4Bt,prog. In the

progenitor, Bp,prog and Bt,prog reach values of 5 ⇥ 109 G and

106 G in non-convective regions as predicted by the Tayler-
Spruit dynamo (Spruit 2002). Inside convective regions one
expects values of Bp,prog and Bt,prog close to kinetic equipar-
tition, which translates into a plasma beta (defined as the
ratio of thermal to magnetic pressure) of � = 104 for the
typical convective Mach numbers of ⇠10�2 in the innermost
burning shells at collapse (Collins et al. 2018). This would
imply rather strong fields of up to 3 ⇥ 1012 G inside a small
central region of radius 40 km and 6 ⇥ 1010 G in the oxygen
shell, but after rescaling by a factor 10�4, the seed fields can
clearly not play any dynamical role after collapse without
dynamo field amplification.
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Figure 2. Time evolution of shock radius (top panels), ⌧adv/⌧heat (bottom left panel) and gain mass (bottom right panel) for s27.0 M� progenitor. Red, green
and blue lines in each panel are the cases for B0 = 1010, 1011 and 1012 G, respectively. Black lines in top panels show the evolution of the 1D HD simulation
for the 27.0 M� model.

To show this clearly, we make a comparison in Fig. 2b of the shock evolution only close to the shock revival time (between tpb = 150
ms and tpb = 250 ms). The shock revival time is indeed delayed for the strong initial field model (blue curve) comparing to the weak initial
field model (red curve).

Fig. 2c shows the evolution of the timescale ratio, ⌧adv/⌧heat. Following Summa et al. (2016), we estimate the advection timescale as

⌧adv =
Mg

Ṁ
, (10)

where Mg is the mass enclosed in the gain layer (gain mass) and Ṁ is the mass-accretion rate through the shock. The neutrino-heating
timescale is defined by

⌧heat =
|Etot,g|
Q̇heat

, (11)

where |Etot,g| is the total energy of the material in the gain layer and Q̇heat is the neutrino-heating rate in this region. Since the residency time
of matter in the gain region is related to the exposure of the material to neutrino heating, ⌧adv/⌧heat & 1 is a necessary condition for the onset
of the shock revival (e.g. Buras et al. 2006). As shown in Fig. 2c, ⌧adv/⌧heat rises toward unity rapidly at around tpb ⇠ 200 ms. It is noted that
this shock revival timescale is consistent with that by Hanke et al. (2013) who conducted the 2D model using the same progenitor (27M� star
of Woosley et al. 2002) with more elaborate neutrino transport scheme.

In Fig. 2c, it is important to point out that the growth rate of the timescale ratio (before exceeding unity) is highest for the weakly
magnetized model (red line), which is followed in order by the moderately magnetized model (green line) and the strongly magnetized
model (blue line). This feature is closely linked to the shock evolution after tpb ⇠ 200 ms, namely, the onset of the shock revival and
the subsequent runaway shock expansion is delayed for the strongly magnetized models. This indicates that the neutrino heating mainly
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Figure 2. Time evolution of shock radius (top panels), ⌧adv/⌧heat (bottom left panel) and gain mass (bottom right panel) for s27.0 M� progenitor. Red, green
and blue lines in each panel are the cases for B0 = 1010, 1011 and 1012 G, respectively. Black lines in top panels show the evolution of the 1D HD simulation
for the 27.0 M� model.
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timescale is defined by
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where |Etot,g| is the total energy of the material in the gain layer and Q̇heat is the neutrino-heating rate in this region. Since the residency time
of matter in the gain region is related to the exposure of the material to neutrino heating, ⌧adv/⌧heat & 1 is a necessary condition for the onset
of the shock revival (e.g. Buras et al. 2006). As shown in Fig. 2c, ⌧adv/⌧heat rises toward unity rapidly at around tpb ⇠ 200 ms. It is noted that
this shock revival timescale is consistent with that by Hanke et al. (2013) who conducted the 2D model using the same progenitor (27M� star
of Woosley et al. 2002) with more elaborate neutrino transport scheme.

In Fig. 2c, it is important to point out that the growth rate of the timescale ratio (before exceeding unity) is highest for the weakly
magnetized model (red line), which is followed in order by the moderately magnetized model (green line) and the strongly magnetized
model (blue line). This feature is closely linked to the shock evolution after tpb ⇠ 200 ms, namely, the onset of the shock revival and
the subsequent runaway shock expansion is delayed for the strongly magnetized models. This indicates that the neutrino heating mainly
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ü Matsumoto+ʼ20

弱い磁場を⼊れて空間３次元計算.
弱い種磁場が増幅されてニュートリノ駆動爆発
を助ける.

⽐較的強い磁場を⼊れて空間２次元計算.
強い磁場はニュートリノが駆動する流体摂動を
弱め衝撃波復活を遅らせる.

MHD

hydro



ü Sukhbold et al. (2016) ApJ, 821, 38

系統的 3D MHD 計算 - 親星モデル（初期条件）
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この質量域から10モデル

親星モデルの中にはSi/O層の境⽬で密度構造
に⼤きな不連続を持つものもある
(例: s10, s11, s12 等).

ZAMS質量に対するコンパクトネス .
23太陽質量あたりにピークがある.
今回の計算では9-20太陽質量から10モデル選択.

ξ = M(R)/R

ρ jumps



ü コアバウンス後は空間３次元計算:

• バウンス後 10 ms で 2D → 3D に切り替え.

• その際にランダムな密度摂動 (≦ 1%) を R > 100 km の領域に注⼊.

• 空間解像度 600(r)x64(θ)x128(φ) 格⼦ (0 ≦ R ≦ 104 km, 0 ≦ θ≦ π , 0 ≦ φ≦ 2π).

ü 初期重⼒崩壊〜コアバウンスまでは空間２次元計算:

• 回転なし, 磁場は ,  B0 = 1010 [G] and r0 = 103 km.

• 空間解像度 600(r)x128(θ) 格⼦ (0 ≦ R ≦ 104 km, 0 ≦ θ≦ π).

4 J. Matsumoto et al.

opacity set of Bruenn (1985). In this run, 20 energy groups that logarithmically spread from 1 to 300 MeV are employed. We use the equation
of state (EOS) by Lattimer & Swesty (1991) (incompressibility K = 220 MeV).

We employ the non-rotating presupernova progenitors of 15.0, 18.4 and 27.0 M� of Woosley et al. (2002). As for the initial configuration
of the magnetic fields, we assume a simple topology following Suwa et al. (2007); Takiwaki et al. (2014); Obergaulinger et al. (2014). The
magnetic field is given by a vector potential in the �-direction of the form

A� =
B0

2
r

3
0

r3 + r
3
0

r sin ✓ , (9)

where r0 = 1000 km characterizes the topology of the field. The magnetic field is uniform when the radius, r, is smaller than r0, while it
is like dipole field when r is larger than r0. B0 determines the strength of the magnetic field inside the core (r < r0). In this study, we set
B0 = 1010, 1011 or 1012 G. The model name is labelled as ‘s27.0B10’, which represents the 27.0 M� model with B0 = 1010 G. We choose
s27.0B10 as a fiducial model because 2D (albeit, non-magnetized) results using this progenitor are available in the literature (e.g. Hanke et al.
2013; Summa et al. 2016). We follow the dynamics up to tfin ⇠ 400 � 500 ms after bounce, depending on the progenitor models. In most of
the models, we terminate the simulations at the final time seeing that the diagnostic explosion energies are greater than 1050 erg. We leave
the more long-term simulation for future work.

The calculations are performed in axisymmetry. Therefore, the derivatives with respect to the �-direction (i.e. @@� ) are taken to be zero in
the governing equations when we run 2D simulations. The grid spacing in this work is the similar to that of 2D runs in Takiwaki et al. (2014).
In the radial direction, a logarithmically stretched grid is adopted for 480 zones that cover from the center up to 5000 km, whereas the polar
angle in the ✓-direction is uniformly divided into �✓ = ⇡/128. The innermost 10 km are computed in spherical symmetry to avoid excessive
time-step limitations. Reflective boundary conditions are imposed on the inner radial boundary (r = 0), while fixed-boundary conditions are
adopted for the outer radial boundary (r = 5000 km) except the gravitational potential that is inversely proportional to the radius at outer
ghost cells. A reflecting boundary condition is imposed on the 2D symmetry axis (e.g. the z-axis in our 2D run). A numerical resolution test
is given in Appendix E.

3 RESULTS

We first describe overall evolution of the magnetized and non-rotating stellar core for our fiducial model (s27.0B10) in Section 3.1. Then
in the subsequent sections, we move on to present results focusing on the impact of the initial magnetic field strength on the postbounce
evolution. The progenitor dependence of the shock evolution is presented in Section 3.4.

3.1 Overall evolution of non-rotating and magnetized core-collapse model of a 27M� star

Fig. 1 shows the temporal evolution of the spatial distribution of the entropy per baryon and magnetic field for the fiducial model (s27.0B10).
The 2D color map of the entropy per baryon is illustrated in the negative region of x (x < 0). The structure of magnetic field lines is drawn by
a line integral convolution method (Cabral & Leedom 1993) in the positive region of x (x > 0). The color depicts the strength of the magnetic
field. Panel (a), (b), (c) and (d) correspond to the time tpb = 100, 200, 300 and 500 ms after bounce, respectively. Hereafter tpb denotes the
postbounce time.

The core bounce occurs after ⇠ 200 ms (i.e. tpb = 0) after the start of the simulation, leading to the shock formation at the radius of ⇠ 20
km. The bounce shock stalls at r ⇠ 140 km around tpb = 100 ms, and then turns into the standing shock (see also, the top left panel of Fig. 2).
When the shock stalls, the structure of the magnetic field lines is like a split monopole as shown in the right-half panel of Fig. 1a. Before
the shock stall (tpb . 100 ms), the flow is almost restricted in radial direction. The split-monopole like configuration is made because the
magnetic field is "frozen-in" with respect to the matter motion. The electric resistivity of the magnetic field is so small that it is disregarded in
this work, which can be well justified in the CCSN environment (Sawai et al. 2013a). The initial vector potential (equation 9) gives magnetic
loops on the equatorial region at around r ⇠ 1000 km. These magnetic loops also gravitationally collapse (dragged by matter infall) and are
shown on the equatorial plane (x & 30 km and z = 0) in Fig. 1a. The center of loops is located at around x ⇠ 45 km and seen as a small
blueish region.

As the (maximum) shock radius starts to gradually shrink after tpb & 100 ms (e.g. Fig. 2a), it gradually deviates from the shock trajectory
of the corresponding 1D model (black solid line in Fig. 2a). This marks the growth of non-spherical motions in the postshock region. One
can clearly observe the deformation of the shock in the left-half panel of Fig. 1b at tpb = 200 ms. In Fig. 1b, one can also see the penetration
of the magnetic field lines (thin red curves in the right-half panel) into the postshock region (high entropy region in the left-half panel), which
makes the field configuration much more complicated than that outside the shock. In our ideal MHD simulations, the field amplification in
the postshock region occurs due to compression and stretching of the magnetic field, which is governed by the non-radial matter motions.
Note in our 2D models that we do not attempt to di↵erentiate the origin of the "non-radial" motions either originating predominantly from
the SASI or neutrino-driven convection because the SASI is liable to be overestimated in 2D compared to 3D simulations (e.g. Hanke et al.
2012, 2013; Fernández et al. 2014).

Fig.1c shows a snapshot after the shock revival (tpb = 300 ms, see also Fig. 2a). The low-mode deformation of the shock and the
formation of the high entropy region (colored by red in the entropy plot) is a common feature of 2D neutrino-driven explosion models. The
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系統的 3D MHD 計算 - 数値計算⼿法

ü 3DnSNe_MHD コード (Matsumoto+’20): 超新星計算⽤ 3DnSNe コード (Takiwaki+’16,’18) の派⽣版.



系統的 3D MHD 計算 - 時間発展の概要

ü 10モデルのエントロピー動画.
衝撃波が膨張するに従って表⽰されている空間スケールが変化していることに注意.
いくつかのモデル（例：s11 @ 約140 ms）は衝撃波が突然膨張.



系統的 3D MHD 計算 - 時間発展の概要

ü 10モデルのエントロピー動画.
衝撃波が膨張するに従って表⽰されている空間スケールが変化していることに注意.
いくつかのモデル（例：s11 @ 約140 ms）は衝撃波が突然膨張.

バウンス後120ms



系統的 3D MHD 計算 - 時間発展の概要

ü 10モデルのエントロピー動画.
衝撃波が膨張するに従って表⽰されている空間スケールが変化していることに注意.
いくつかのモデル（例：s11 @ 約140 ms）は衝撃波が突然膨張.

バウンス後150ms
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ü （上図）質量降着率 ＠ r = 500km.
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系統的 3D MHD 計算 - 衝撃波復活

バウンス後 < 100 ms程度までは, おおよそZAMS
質量（~コンパクトネス）の順.

密度ジャンプがある Si/O 層境界が500 km まで落
ちてきた時に質量降着率が突然減少するモデルも.

ü （下図）平均衝撃波半径.

密度ジャンプに起因する質量降着率の急減少によって
衝撃波⾯でのラム圧も減少し, 停滞していた衝撃波が
突然膨張に転じる. 
→ 衝撃波が復活する時刻は ZAMS 質量の順でない.

最終的には計算した10モデル全てで計算時間内に
衝撃波が復活した.
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ü （上図）質量降着率 ＠ r = 500km.

ü （下図）反電⼦型ニュートリノ光度.
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系統的 3D MHD 計算 - ニュートリノ

バウンス後 < 100 ms程度までは, おおよそZAMS
質量（~コンパクトネス）の順.

密度ジャンプがある Si/O 層境界が500 km まで落
ちてきた時に質量降着率が突然減少するモデルも.

ニュートリノ光度〜質量降着率〜親星コンパクトネス.
→ ニュートリノ検出イベント数を⽤いて親星の

コンパクトネスに制限.

質量降着率の減少に呼応してニュートリノ光度も減少.
→ （超新星が⼗分近ければ）親星の密度構造もわかる.
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まとめ

ü数値モデルが予⾔する超新星ニュートリノ.
空間次元依存性：球対称1D vs. 対流などを考慮できる2D,3D
EOS依存性：中⼼の潰れ⽅, PNS構造, 衝撃波の時間発展

ü重⼒崩壊型超新星の系統的な空間３次元数値シミュレーションは実⾏可能な段階に.
9-20太陽質量の親星モデル (Sukhbold+ʼ16) に対して３次元MHD計算を実⾏.
全てのモデルでバウンス後300ms以内に衝撃波復活.

ü数値計算から得られたニュートリノシグナルは以下の特徴を⽰した：
ニュートリノ光度は親星のコンパクトネスと正の相関. 
親星の密度構造に対応する光度曲線の進化.


