

カムランドにおける 超新星背景ニュートリノの探索

小原脩平 他 KamLAND collaboration

東北大学学際科学フロンティア研究所 東北大学ニュートリノ科学研究センター

* Accepted for publication in ApJ

物理目的(1)

超新星背景ニュートリノ

- "超新星爆発"は多くのニュートリノを放出する爆発的な天体現象
- 過去におきた超新星爆発から生じたニュートリノが今 も宇宙を漂っている(超新星背景ニュートリノ)
- 平均的な超新星爆発の描像をみることができる
- 反電子ニュートリノ ($\bar{\nu}_e$) 探索を行うにあたって背景事象があるので 10-30MeV辺りが探索領域
 - 低エネルギー側は原子炉ニュートリノ
 - 高エネルギー側は大気ニュートリノ

物理目的(2)

太陽反電子ニュートリノ (MSW+RSFP)

ニュートリノ磁気能率と太陽磁場の影響でフレーバー 転換がおこる可能性がある

•
$$P(\nu_e \to \bar{\nu}_e) \simeq 1.8 \times 10^{-10} \sin^2 2\theta_{12} \times \left[\frac{\mu}{10^{-12} \mu_B} \frac{B_T(0.05 R_{\odot})}{10 \text{ kG}} \right]^2$$

Akhmedov, E., & Pulido, J. 2003, PhLB, 553, 7

暗黑物質対消滅

● 軽い暗黒物質対消滅から生じるニュートリノペア

$$\frac{d\phi}{dE_{\nu}} = \frac{\langle \sigma_{A} \mathbf{v} \rangle}{2} J_{\text{ave}} \frac{R_{\text{sc}} \rho_{0}^{2}}{m_{\nu}^{2}} \frac{1}{3} \delta \left(E_{\nu} - m_{\chi} \right),$$

Palomares-Ruiz, S., & Pascoli, S. 2008, PhRvD, 77, 025025

(不活性ニュートリノからの崩壊)

(原始ブラックホールからの輻射)

 $\nu_e^{\rm MSW} \rightarrow \nu_\mu \rightarrow \bar{\nu}_e \ \ {\rm or} \ \nu_e^{\rm RSFP} \rightarrow \bar{\nu}_\mu \rightarrow \bar{\nu}_e$

 $\chi\chi \to \nu \bar{\nu}$

色んなニュートリノ検出器など

<u>特徴</u>

- 地下にあって宇宙線由来の背景事象低減
- ・ 主目的の物理で,異なる最適化されたエネルギー領域と検出方法
- (※色塗りは僕の独断と偏見です.メインのエネルギー領域に色塗り)

XENON-nT

液体キセノンシンチレータ 数 keV 領域 のスペイン

KamLAND

有機液体シンチレータ(油) 300keV ~ 100MeV @神岡

Super-Kamiokande

水チェレンコフ @ 神岡 10MeV ~ 100GeV

IceCube

ドチェレンコフ @ 南

TeV 以_

KamLAND / Super-Kamiokande

	KamLAND	Super-K	
場所	岐阜県神岡鉱山地下1000m		
大きさ	φ13mの球状 (1kton)	φ40m×L40mの円筒状 (50kton)	
媒質	有機液体シンチレータ (超純油)	水 (超純水)	
検出方法	シンチレーション光 + PMT (2千本)	チェレンコフ光 + PMT (1万本)	
ニュートリノ方向感度	等方発光なので, 到来方向は不明	チェレンコフリングの再 構成で到来方向同定可能	
検出閾値	荷電粒子全てに発光	チェレンコフ閾値	

Kamland Detector Kamioka Liquid-scintillator Anti-Neutrino Detector

- ▶ 1 kt **液体シンチレータ** 検出器
- ▶ 神岡鉱山 池ノ山山頂より 1 km 地下
- ▶ シンチレーション光を約2000本の光電 子増倍管(PMT)で観測
- ヒット時間と電荷量から事象再構成

- ▶ KamLAND-Zen の期間だけ検出器中心部 にインナーバルーンを導入
- ▶ 背景事象混入低減のため,この領域は解 析から排除

LS=Liquid-Scintillator, BO=Buffer-Oil, OD=OuterDetector, ID=InnerDetector(LS+BO)

Kamland Detector Kamioka Liquid-scintillator Anti-Neutrino Detector

- ▶ 1 kt **液体シンチレータ** 検出器
- ▶ 神岡鉱山 池ノ山山頂より 1 km 地下
- ▶ シンチレーション光を約2000本の光電 子増倍管(PMT)で観測
- ▶ ヒット時間と電荷量から事象再構成

- ▶ KamLAND-Zen の期間だけ検出器中心部 にインナーバルーンを導入
- ▶ 背景事象混入低減のため,この領域は解 析から排除

LS=Liquid-Scintillator, BO=Buffer-Oil, OD=OuterDetector, ID=InnerDetector(LS+BO)

シンチレーション光と事象再構成

- ☑ エネルギーと事象位置は ヒット時間と電荷量から再構成
- ☑ 様々な放射線源で検出器応答を較正済み
- ☑ 原子核破砕生成物や大気ニュートリノでも確認

事象選定

- 逆ベータ崩壊反応(IBD)を用いて**反電子ニュートリノ(\bar{\nu}_e)**を探索
 - 再構成エネルギーE_{prompt} = 7.5 30 MeVの範囲を選択
 - (ニュートリノエネルギーEv = 8.3 30.8 MeV)
 - KamLAND中心から半径5.5mの有効体積
- 遅延同時計測を用いる
 - 陽電子による先発信号(Prompt)
 - + 中性子捕獲ガンマ線による後発信号(Delayed)
- ●背景事象
 - 原子炉ニュートリノ
 - 偶発遅延同時計測事象
 - 原子核破砕生成物 (⁹Li)
 - ●高速中性子
 - 大気ニュートリノ

4528.5日分データからのニュートリノ事象候補

Energy Spectra

- 合計21個の遅延同時計測事象を観測
 - このうち3個が複数の後発事象
 - 最終的に18個を逆ベータ崩壊反応事象 として解析

* 例えば高速中性子や大気ニュートリノなどが複数の後発信号をつくりうる

フィット結果(1/3)

理論的計算に 基づく予測値 シミュレーション (NEUT)による予測

期待事象数 vs. ベストフィット

	期待事象数	フィット結果	
原子炉ニュートリノ	1.4 ± 0.6	1.3	
偶発事象	$(7.3 \pm 1.0) \times 10^{-2}$	7.3 × 10 ⁻²	
高速中性子	6.8 ± 6.8	3.3	
原子核破砕生成物	1.4 ± 3.6	4.5	
大気ニュートリノ 荷電カレント反応	1.1 ± 0.3	1.1	
大気ニュートリノ中性カレント反応	20.6 ± 5.9 (数値計算) 16.5 ^{+5.1} -4.5 (NEUT)	7.5	
超新星背景ニュートリノ (中里モデル)	0.44	0 (best fit) 9.3 (90% C.L. U.L.)	
合計	31.4 ± 9.7	17.8 (best) 27.0 (90% C.L. U.L.)	

有意な信号超過は見つからなかった

フィット結果 (2/3)

Energy Spectrum

Radius Distribution

フィット結果(3/3)

どのモデルにおいても超新星背景ニュートリノはゼロ

いくつかの超新星背景ニュートリノ予測モデルを使ってフィット

超新星背景ニュートリノの理論的予測	90%信頼度での上限値 (ベストフィット)		予測値
	事象数	フラックス (cm ⁻² s ⁻¹)	フラックス (cm ⁻² s ⁻¹)
Kaplinghat+00	9.4 (0)	74.5	19.9
Horiuchi+09 (6MeV effective temperature)	10.2 (0)	61.6	5.8
Nakazato+15 (max, inverted-mass ordering)	9.3 (0)	108	5.1
Nakazato+15 (min, normal-mass ordering)	8.9 (0)	105	2.2

モデルによらないフラックス上限値

- 最新の Super-K IV (2021) の結果が一部の理論
 予測に触り始めている
- 今回のKamLANDの結果は13MeV以下で最も厳しい上限値を与えている
- この結果は他の宇宙由来のニュートリノ事象探索への制限として捉えることができる(例,原始ブラックホールからの輻射,不活性ニュートリノからの崩壊,暗黒物質対消滅など)

8-13 MeVで最も厳しい上限値 10⁻¹

14 / 16

太陽8Bニュートリノ転換確率への制限

- ullet MSW+RSFPによって太陽ニュートリノが転換(8 B $u_e
 ightarrow ar{
 u}_e$)する確率に制限を与えた
- 今回得られた結果(P<3.5×10⁻⁵) は最も厳しい上限値
- 太陽磁場を仮定して,ニュートリノ磁気能率へも制限が加わる

$$\mu < 4.9 \times 10^{-10} \mu_B \left(\frac{10 \,\mathrm{kG}}{B_T (0.05 R_\odot)} \right),$$

しかしこれは Borexino による太陽ニュートリノ測定から得られる上限値よりもまだ弱い $(0.28 \times 10^{-10} \mu_B)$

太陽ニュートリノ転換確率上限値

軽い暗黒物質対消滅への制限

- 軽い暗黒物質同士が対消滅してニュートリノペアになるモードについて制限が加わる $(\chi + \chi \rightarrow \nu + \bar{\nu})$
- $\frac{d\phi}{dE_{\nu}} = \frac{\langle \sigma_{A} \mathbf{v} \rangle}{2} J_{\text{ave}} \frac{R_{\text{sc}} \rho_{0}^{2}}{m_{\chi}^{2}} \frac{1}{3} \delta \left(E_{\nu} m_{\chi} \right)$
- 15MeV以下で制限を与えた

まとめ

- 大型液体シンチレータ検出器カムランドで得られた4528日分のデータから,8-30MeV領域の宇宙由来の反電子ニュートリノ事象探索を行った
- 背景事象と比較して有意な信号超過は見受けられなかったため90%信頼度で下記の上限値を与えた
 - モデルによらない反電子ニュートリノのフラックス上限値; 8−13 MeV領域で最も厳しい上限値
 - いくつかの超新星背景ニュートリノモデルを仮定した場合の各モデルへのフラックス上限値; $60-100\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$
 - 太陽反電子ニュートリノへの転換確率への最も厳しい上限値; P<3.5×10⁻⁵
 - (暗黒物質対消滅からのニュートリノ対生成の反応断面積)
- これらの結果についてまとめたものは論文に投稿済み (Accepted for publication in ApJ @2021年10月)
 - プレプリントがarXivにあがっています arXiv:2018.08527