

カムランドにおける 超新星背景ニュートリノの探索 小原脩平他 KamLAND collaboration

東北大学学際科学フロンティア研究所 東北大学ニュートリノ科学研究センター

Preprint <u>arXiv:2108.08527</u>
Accepted for publication in ApJ

2022.01.06

物理目的(1)

超新星背景ニュートリノ

- "超新星爆発"は多くのニュートリノを放出する爆発的 な天体現象
- 過去におきた超新星爆発から生じたニュートリノが今 も宇宙を漂っている(超新星背景ニュートリノ)
- 平均的な超新星爆発の描像をみることができる
- 反電子ニュートリノ ($\bar{\nu}_{\rho}$) 探索を行うにあたって背景事 象があるので 10-30MeV辺りが探索領域 低エネルギー側は原子炉ニュートリノ
 - 高エネルギー側は大気ニュートリノ

物理目的(2)

太陽反電子ニュートリノ (MSW+RSFP)

ニュートリノ磁気能率と太陽磁場の影響でフ 転換がおこる可能性がある

•
$$P(\nu_e \to \bar{\nu}_e) \simeq 1.8 \times 10^{-10} \sin^2 2\theta_{12} \times \left[\frac{\mu}{10^{-12}\mu_B} \frac{B_T(0.05R_{\odot})}{10 \text{ kG}}\right]^2$$

Akhmedov, E.,

暗黒物質対消滅

軽い暗黒物質対消滅から生じるニュートリノペア

• $\frac{d\phi}{dE_{\nu}} = \frac{\langle \sigma_A \mathbf{v} \rangle}{2} J_{\text{ave}} \frac{R_{\text{sc}} \rho_0^2}{m_{\chi}^2} \frac{1}{3} \delta\left(E_{\nu} - m_{\chi}\right),$

Palomares-Ruiz, S., & Pascoli, S. 2008, PhRvD, 77, 025025

(不活性ニュートリノからの崩壊)

(原始ブラックホールからの輻射)

2022.01.06

"KamLANDでの超新星背景ニュートリノの探索",小原,第8回SN研究会

& Pulido, J. 2003, PhLB, 553, 7

•

色んなニュートリノ検出器など

特徴

- 地下にあって宇宙線由来の背景事象低減

2022.01.06

KamLAND / Super-Kamiokande

	KamLAND
場所	岐阜県神岡
大きさ	φ13mの球状 (1kton)
媒質	有機液体シンチレータ (超純油)
検出方法	シンチレーション光 + PMT (2千本)
ニュートリノ方向感度	等方発光なので, 到来方向は不明
検出閾値	荷電粒子全てに発光

2022.01.06

"KamLANDでの超新星背景ニュートリノの探索",小原,第8回SN研究会

Super-K

l鉱山地下1000m

φ40m×L40mの円筒状 (50kton)

水 (超純水) チェレンコフ光 + PMT (1万本) 様成で到来方向同定可能

チェレンコフ閾値

KamLAND Detector Kamioka Liquid-scintillator Anti-Neutrino Detector

LS=Liquid-Scintillator, BO=Buffer-Oil, OD=OuterDetector, ID=InnerDetector(LS+BO)

2022.01.06

KamLAND Detector Kamioka Liquid-scintillator Anti-Neutrino Detector

LS=Liquid-Scintillator, BO=Buffer-Oil, OD=OuterDetector, ID=InnerDetector(LS+BO)

2022.01.06

シンチレーション光と事象再構成

✓ エネルギーと事象位置は ヒット時間と電荷量から再構成 ■ 様々な放射線源で検出器応答を較正済み ☑ 原子核破砕生成物や大気ニュートリノでも確認

2022.01.06

事象選定

● 逆ベータ崩壊反応(IBD)を用いて**反電子ニュートリノ(**レ̄_ℓ)を探索

- 再構成エネルギーEprompt = 7.5-30 MeVの範囲を選択
- (ニュートリノエネルギーEv = 8.3-30.8 MeV)
- KamLAND中心から半径5.5mの有効体積
- 遅延同時計測を用いる
 - 陽電子による先発信号(Prompt)
 - + 中性子捕獲ガンマ線による後発信号(Delayed)

● 背景事象

- 原子炉ニュートリノ
- 偶発遅延同時計測事象
- 原子核破砕生成物 (⁹Li)
- 高速中性子
- 大気ニュートリノ

"KamLANDでの超新星背景ニュートリノの探索",小原,第8回SN研究会

9 / 16

4528.5日分データからのニュートリノ事象候補

Energy Spectra

2022.01.06

"KamLANDでの超新星背景ニュートリノの探索",小原,第8回SN研究会

* 例えば高速中性子や大気ニュートリノなどが複数の後発信号をつくりうる

フィット結果(1/3)

2022.01.06

"KamLANDでの超新星背景ニュートリノの探索",小原,第8回SN研究会

		期待事象数	フィット結果
	原子炉ニュートリノ	1.4 ± 0.6	1.3
	偶発事象	(7.3 ± 1.0) × 10 ⁻²	7.3 × 10 ⁻²
	高速中性子	6.8 ± 6.8	3.3
	原子核破砕生成物	1.4 ± 3.6	4.5
算に	大気ニュートリノ 荷電カレント反応	1.1 ± 0.3	1.1
測値	大気ニュートリノ中性カ レント反応	20.6 ± 5.9 (数値計算) 16.5 ^{+5.1} -4.5 (NEUT)	7.5
ンコン よる予測	超新星背景ニュートリノ (中里モデル)	0.44	0 (best fit) 9.3 (90% C.L. U.L.)
	合計	31.4 ± 9.7	17.8 (best) 27.0 (90% C.L. U.L.)

11 / 16

フィット結果(2/3)

Energy Spectrum

2022.01.06

Radius Distribution

フィット結果(3/3)

<u>いくつかの超新星背景ニュートリノ予測</u>

超新星背景ニュートリノの理論的予測

Kaplinghat+00

Horiuchi+09 (6MeV effective temperature)

Nakazato+15 (max, inverted-mass ordering)

Nakazato+15
(min, normal-mass ordering)

2022.01.06

どのモデルにおいても 超新星背景ニュートリノはゼロ					
<u> リモデルを使ってフィット</u>					
90%信頼度での上限値 (ベストフィット)		予測値			
事象数	フラックス (cm ⁻² s ⁻¹)	フラックス (cm ⁻² s ⁻¹)			
9.4 (0)	74.5	19.9			
10.2 (0)	61.6	5.8			
9.3 (0)	108	5.1			
8.9 (0)	105	2.2			

モデルによらないフラックス上限値

10

10

10²

10

10

10

MeV⁻¹)

 $ar{
u}_e$ flux upper limit (cm $^{-2}$

- 最新の Super-K IV (2021) の結果が一部の理論 予測に触り始めている
- 今回のKamLANDの結果は13MeV以下で最も厳 しい上限値を与えている
- この結果は他の宇宙由来のニュートリノ事象 探索への制限として捉えることができる(例, 原始ブラックホールからの輻射,不活性ニュー トリノからの崩壊,暗黒物質対消滅など)

8-13 MeVで最も厳しい上限値

"KamLANDでの超新星背景ニュートリノの探索",小原,第8回SN研究会

14 / 16

太陽⁸Bニュートリノ転換確率への制限

• MSW+RSFPによって太陽ニュートリノが転換(⁸B $\nu_e \rightarrow \bar{\nu}_e$)する確率に制限を与えた ● 今回得られた結果(P<3.5×10⁻₅) は最も厳しい上限値 ● 太陽磁場を仮定して, ニュートリノ磁気能率へも制限が加わる $\mu < 4.9 \times 10^{-10} \mu_B \left(\frac{10 \,\mathrm{kG}}{B_T (0.05 R_\odot)} \right),$ しかしこれは Borexino による太陽ニュートリノ測定から得られる上限値よりもま だ弱い ($0.28 \times 10^{-10} \mu_B$)

軽い暗黒物質対消滅への制限

軽い暗黒物質同士が対消滅してニュートリノペアに なるモードについて制限が加わる($\chi + \chi \rightarrow \nu + \bar{\nu}$)

•
$$\frac{d\phi}{dE_{\nu}} = \frac{\langle \sigma_A \mathbf{v} \rangle}{2} J_{\text{ave}} \frac{R_{\text{sc}} \rho_0^2}{m_{\chi}^2} \frac{1}{3} \delta \left(E_{\nu} - m_{\chi} \right)$$

15MeV以下で制限を与えた

 $(cm^3 s^{-1})$ U.L.) $< \sigma_A \nu > (90\%$ C.L.

まとめ

の反電子ニュートリノ事象探索を行った $60 - 100 \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ ●太陽反電子ニュートリノへの転換確率への最も厳しい上限値: P<3.5×10-5</p> ● (暗黒物質対消滅からのニュートリノ対生成の反応断面積) プレプリントがarXivにあがっています arXiv:2018.08527

● 大型液体シンチレータ検出器カムランドで得られた4528日分のデータから,8-30MeV領域の宇宙由来

● 背景事象と比較して有意な信号超過は見受けられなかったため90%信頼度で下記の上限値を与えた ● モデルによらない反電子ニュートリノのフラックス上限値; 8-13 MeV領域で最も厳しい上限値 ● いくつかの超新星背景ニュートリノモデルを仮定した場合の各モデルへのフラックス上限値;

● これらの結果についてまとめたものは論文に投稿済み (Accepted for publication in ApJ @2021年10月)

