超新星由来のr過程元素を強く示唆する 銀河系化学進化

辻本拓司(国立天文台)

Galactic dynamics: radial migration of stars
星の大移動

Elemental abundance patterns at different Galactocenric distances

Application to the understanding of r-process enrichment

第8回超新星ニュートリノ研究会,1月6-7日 at 早稲田大

太陽双子星 (solar twins)

✓ stars which exhibit stellar atmospheric characteristics quite similar to the solar values

an effective temperature (≤ 100 K), surface gravity (log $g: \leq 0.1$), [Fe/H] ratio (≤ 0.1 dex)

- ✓ the measurement of 79 twins in the solar vicinity ($\leq 100 \text{ pc}$)
- ✓ precise determinations of stellar ages (< 0.4 Gyr) and chemical abundances (< 0.01 dex) (Spina+ 2018)</p>

The ages of solar twins are widely distributed over 0-10 Gyr

Detailed elemental abundances of solar twins as a function of stellar ages

年齢の異なる太陽双子星はどのように生まれたのか?

Stars radially move on the Galactic disk (: radial migration)

(e.g., Sellwood & Binney 2002; Roskar+ 2008, etc)

@Danna Berry

This theory predicts that the stars in the solar vicinity represent the mixture of stars born at various Galactocentric distances over the disk.

What drives the migration of stars?

Spiral arms make stars migrate on the disk in the radial direction via an exchange of angular momentum

The solar system also migrated from the inner disk

The ages of solar twins are widely distributed over 0-10 Gyr

Locally identified solar twins might be the assembly of stars migrating from various R_G in the inner disk

Older twins were born at the disk closer to the center

Elemental abundance patterns $\frac{\text{of different age group}}{\text{at different } R_{G}}$

太陽双子星の化学組成のvariationをうまく説明できる

t [Fe/H]=0:星形成が開始してから[Fe/H]=0に達するまでの時間

(= ディスクの年齢 – 双子星の年齢)

[r-process/Fe] ratios don't follow the monotonous trend

銀河系ディスク上での[*r*-process/Fe]の傾向(down&up)を説明するためには delay timeが大きく異なる2つ(short & long)のサイトが不可欠 CCSNeとNSMs両者のmajor contributionを支持 さらに、*n*≥0などの大きな値が示唆される

まとめ

□太陽双子星には年齢と化学組成パターンにvariationが存在する

□銀河動力学(星の移動)と銀河ディスク上での異なる星形成率を 考慮することで説明できる

□ r過程元素のenrichmentは化学進化の初期とlate phase両者にて 促進されている

□r過程元素が中性子星合体と共に超新星で合成されている ことを強く示唆する

貢献度はほぼ同程度と評価できる