ニュートリノ集団振動の非線形進化

(*arXiv:2104.10532* + *in prep.*)

財前 真理 (東京大学 天文学専攻 D3)

新学術「地下宇宙」 第8回超新星ニュートリノ研究会 2022/01/06-07 @オンライン

1

超新星ニュートリノ

ニュートリノ加熱プロセス:

- 衝撃波は降着物質のせいで停滞する.
- ニュートリノで内側から炙ることで、再度エネルギーを付与させる.

観測から得られるもの (ex. SN1987A):

• 爆発機構, 元素合成, 状態方程式, コンパクト天体, ニュートリノ物理, ...etc.

銀河系内イベント~O(1/100) yr.

• 理論的な研究が必要不可欠!!

ニュートリノ振動 vs. 超新星爆発

超新星内でのフレーバー変

超新星内部でのニュートリノ振動:

振動スケール:

- 真空振動: $\omega \propto E_{\nu}^{-1} \sim O(1)$ km (for 10 MeV neutrinos)
- 物質振動: $\lambda \propto n_e \leq O(1)$ cm (in the decoupling region)
- 集団振動: $\mu \propto n_{\nu} \lesssim O(1)$ cm (in the decoupling region)

振動モード

ニュートリノ集団振動は $(\rho - \overline{\rho})$ の項が重要.

ν と **ν** の運動量空間分布の間に 「クロッシング」が存在することがポイント.

(Morinaga '21 and Dasgupta '21)

・ Slow mode
 ▶ エネルギー分布間でのクロッシング: ω_F

▶ 真空振動からの影響 → O(0.1-10) m.

- e.g., • Duan+ '06 • Chakraborty+ '16
- ▶ vは負のエネルギー扱いなので、結果的にグローバルに満たされる.

• Fast mode (Fast Flavor Conversion, FFC)

- ▶ 角度分布間でのクロッシング: *G*_v
 - ➤ ニュートリノ密度のみで駆動 → O(1-100) cm.
 - ▶ ローカルな条件.
 - ▶ 停滞衝撃波内部でも条件が満たされる可能性あり.
- e.g.,
- Sawyer '05 & '16
- Izaguirre+ '17

クロッシングの可能性

Dasgupta+ '17, Capozzi+ '20, Shalgar+ '21

8

非一様空間でのフレーバー進化

頑張って空間分布の時間進化を見る. ニュートリノ分布:(*t*, *z*, *v*_{*z*})

- 角度分布を跨ぐ縞模様.
- フレーバー平衡 (〈P_{ee}〉 ~ 0.5).
 - フレーバー波同士の干渉により小さい スケールの構造ができる.

FFCのタイプ/分類

セットアップ

(衝突項の影響は加藤さんや佐々木さんの方で)

11

FFCの局所進化計算

$$P_{\perp} = \sqrt{P_1^2 + P_2^2} = \rho_{\nu}^{\alpha\beta}$$

$$P_{ee} = \frac{1}{2} \left(1 + P_3 \right)$$

Type-I & II の比較

クロッシングと生存確率 for Type-I

クロッシングと生存確率 for Type-II

Type-I & II ELN

クロッシングを埋めるようにFFC が角度分布を変化させている. ν_e 過剰の場合、 ν_e の多いところから少ないところへ移送しているように見 える.

逆もまた然り.

Type-I & II クロッシング

漸近的な FFC の振る舞い: α に応じてクロッシングを埋める.

	Type-I クロッシング	Type-II クロッシング
α<1 (v _e 過剰)	FFC at $v_z < v_{z,c}$	FFC at $v_z > v_{z,c}$
α>1 (ν̄ _e 過剰)	(未計算だが恐らく) FFC at v _z > v _{z,c}	FFC at $v_z < v_{z,c}$

まとめ

- ✓ 超新星内部の高いニュートリノフラックス
 →ニュートリノ集団振動.
- ✓ 角度分布におけるνとv 間のクロッシング
 → Fast Flavor conversion (FFC).
- ✓ フレーバー波同士の干渉によるフレーバー平衡.
 ▶ Type-I & II クロッシングを簡単にカテゴライズできる?
 ▶ より一般的なケースで分類すればCCSN計算に組み込めそう?
 ▶ (衝突項の取り扱い等々問題はまだ山積み.)

Back slides

Slow vs. Fast

ハミルトニアンとしては 角度依存性しか残らない.

エネルギー分布でのクロッシング:

→ 真空振動が slow mode に影響を与える. Long-scale になる.

角度分布でのクロッシング:

- → Fast mode は真空振動と独立に進化できる(はず).
- → FFC のみ調べたいなら、真空振動項を落とせばよい.

コヒーレント散乱

$$\sigma_A(E_\nu, (A, Z)) \approx \frac{1}{4\pi} A \left[1 - \frac{1}{A} (1 - 2 \sin \theta_W) \right]$$

コヒーレントニュートリノ-原子核 散乱:

- 散乱断面積 ∝ *E*_ν².
- 反vの方が平均エネルギーが高い.
 →内向き方向で支配的になる.
- 内向きと外向きの間でクロッシングができる.
 - (散乱なしならvが一般的に支配的になる).

Morinaga+ '20

セットアップ

 $H_{\rm vac}$, $H_{\rm mat}$, 衝突項 Γ を無視.

$$(\partial_t + v_z \partial_z) \mathbf{P}(t, z, v_z) = \mathbf{H}(t, z, v_z) \times \mathbf{P}(t, z, v_z)$$
$$= \left[\mu_{\nu_e} \int dv'_z (1 - v_z v'_z) G_e(v'_z) \mathbf{P}(t, z, v'_z) \right] \times \mathbf{P}(t, z, v_z)$$

$$\rho_{\nu}(t, z, v_z) = \frac{\operatorname{Tr}(\rho_{\nu})}{2} + \frac{1}{2}\boldsymbol{\sigma} \cdot \boldsymbol{P}(t, z, v_z)$$

$$\sigma$$
 : Pauli matrices
P : Polarization vector

 $G_e(v_z) \equiv g_{\nu_e}(v_z) - \alpha g_{\bar{\nu}_e}(v_z)$

 g_{v} :角度分布 G_{e} : eLN 角度分布

