SK-Gdにおける超新星爆発モデルの区別と方向決定精度の評価

Evaluation of Supernova Model Discrimination and Pointing Accuracy with SK-Gd

> Yuri Kashiwagi (M2) ICRR, Kamioka, Sekiya Lab.

Outline

- Introduction and Motivation
 - SK-Gd Project (2020-)
 - Supernova neutrino detection with SK-Gd
- Algorithm
 - SN direction determination with SK-Gd
 - Pointing accuracy derivation
- Method
 - Supernova models
 - Realistic supernova simulation in SK
 - Data format unification
- Results (6 supernova models)
 - SK's response for supernova at 10kpc with neutrino oscillation in NMO
 - Pointing accuracy for supernova at 10kpc
- Summary and Prospects

Introduction and Motivation Vital role of SK in Supernova (SN) Observation

Yuri Kashiwagi

Introduction and Motivation SK-Gd Project (2020-)

Gadolinium loading to SK water

For enhancing neutron detection efficiency

- → easier to distinguish events with/without neutron capture
- \rightarrow better to determine supernova direction

Fukuda, S., et al. *Nucl. Instrum. Methods Phys. Res. A* 501.2-3 (2003): 418-462.

Outer Dete

Beacom & Vagins.

PRL 93 (2004) 171101

Electronics Huts

Inner Detector

Mt. Ikeno

Control Room

Introduction and Motivation $SN \nu observation @ SK (~5-30 MeV)$

Motivation

Cross section vs. Neutrino energy

- Understanding the Gd-loaded SK's response for various SN models
- Investigating whether SK-Gd achieves the goal of pointing SN within 3° accuracy

Algorithm Event Selection and Neutron tagging in SNWATCH

delayed candidates

- To extract ES events: Neutron tagging to identify IBD
- A speed-oriented simple algorithm

 Selection of prompt candidates ≥ 7MeV
 Selection of delayed candidates
 Neutron tagging pair of events with ΔT < 500 µs & ΔR < 300 cm

Algorithm Determination of Supernova Direction in SNWATCH

- Maximum Likelihood Fit
 - The likelihood function for the *i*-th event

$$L_{i} = \sum_{r,k} N_{r,k} t_{r}(f_{i}) p_{r}(E_{i}, \hat{d}_{i}; \hat{d}_{SN}^{reco})$$

$$PDF \text{ function energy bin (determined by SK MC)}$$

$$(\text{IBD, ES, }^{16}\text{O CC}) energy$$

Likelihood

$$\mathcal{L} = \exp\left\{\sum_{k,r} N_{r,k}\right\} \prod_{i} L_{i}$$

Maximized by

$$\frac{\partial \mathcal{L}}{\partial N_{r,k}} = \frac{\partial \mathcal{L}}{\partial \hat{d}_{SN}^{reco}} = 0$$

Nakazato model(1): $20M_{\odot}$, Z = 0.02Nakazato model(2): $13M_{\odot}$, Z = 0.004

Pointing Accuracy in SNWATCH

 Pointing accuracy at 1σ is the value of Δθ at which the integral of the histogram includes 68% of the 1000 MC samples

• SK-Gd's goal: 3° accuracy (Wilson model)

Method Supernova Models

- Five 1D models + one 3D model
- After the data format unification **

Equation of state by Shen et al. (1998a, 1998b) [82, 83].

** Equation of state based on density-dependent relativistic mean-field model [98].

*** Equation of state by Lattimer and Swesty [96]

Summary of Supernova models. Core bounce occurs at 0 s.

Model Name	Wilson ^[1]	Nakazato ^[2]	Mori ^[3]	Hüdelpohl ^[4]	Fischer ^[5]	Tamborra ^[6]
Dimension	1D	1D	1D	1D	1D	3D
progenitor mass $[M_{\odot}]$	20	20	9.6	8.8	8.8	27
start time [s]	0.03	-0.05	-0.256	-0.02	0.0	0.011
duration [s]	14.96	20.05	19.95	8.98	6.10	0.54
EoS	-	Shen*	DD2**	Shen*	Shen*	LS***
Reference[1] Totani, T., et al.[2] Nakazato, K., et al.[3] Mori, M., et al.[4] Hüdepohl, L., et al.[5] Fischer, T., et al.[6] Tamborra et al.	4 <i>pJ</i> 496.1 (199 al. <i>ApJS</i> 205.1 <i>TEP</i> 2021.2 (20 al. <i>PhRvL</i> 104. <i>A&A</i> 517 (201 <i>PRD</i> 90.4 (2014	8): 216 (2013): 2)21): 023E01 25 (2010): 25110 .0): A80 .): 045032.	1	Electron Supe (O-Ne-M	capture rnova Ig core)	SASI (Standing Accretion-Sho Instability)

6 models until 20s

Luminosity vs. time

Mean energy vs. time

2023/3/3(Fri) @SN v workshop

Data Format Unification

"Nakazato format"

Nakazato, K., et al. *ApJS* 205.1 (2013): 2 http://asphwww.ph.noda.tus.ac.jp/snn/

- Converting non-"Nakazato format" data to "Nakazato format"
 - time-integrated SN ν flux [MeV⁻¹ · kpc⁻²]

 $L_{\nu_i}(t)$ and $\langle E_{\nu_i} \rangle(t)$ are usually available in every model

2023/3/3(Fri) @SN v workshop

Detector Response and Pointing Accuracy for SN at 10 kpc

Average # of events generated by SKSNSim (32.5k m³)

Generated by	Wilson			Nakazato			Mori		
SKSNSim	No Osc.	NMO	IMO	No Osc.	NMO	IMO	No Osc.	NMO	IMO
IBD (\bar{v}_e)	7431	8207	9970	3542	3893	4693	3275	3422	3745
$\mathrm{ES}\left(\nu_{\mathrm{e}}\right)$	223	231	229	173	172	171	177	148	156
ES $(\bar{\nu}_e)$	97	97	98	63	66	72	60	61	63
$\mathrm{ES}\left(\nu_{X}\right)$	80	79	80	60	60	60	52	57	56
ES $(\bar{\nu}_X)$	69	69	69	52	51	48	45	45	44
total	8622	10530	12294	4074	4580	5389	3690	3904	4239
Generated by	Hüdelpoh	I		Fischer			Tamborra		
SKSNSim	No Osc.	NMO	IMO	No Osc.	NMO	IMO	No Osc.	NMO	IMO
IBD (\bar{v}_e)	3048	3052	3049	1884	1990	2242	3830	3487	2718
$\mathrm{ES}\left(\nu_{\mathrm{e}}\right)$	146	124	132	90	87	88	135	82	99
$\mathrm{ES}\left(\bar{v}_{\mathrm{e}}\right)$	53	53	53	35	35	37	50	45	35
ES (v_x)	43	47	46	31	31	31	28	38	35
ES $(\bar{\nu}_{\chi})$	38	38	38	27	26	25	25	26	30
	50								

Average # of reconstructed events (22.5k m³)

Reconstructed	Wilson			Nakazato			Mori		
	No Osc.	NMO	IMO	No Osc.	NMO	IMO	No Osc.	NMO	IMO
IBD (\bar{v}_e)	4879	5364	6465	2221	2434	2921	2048	2144	2355
$\mathrm{ES}\left(\nu_{\mathrm{e}}\right)$	69	106	95	43	57	53	44	46	45
ES $(\bar{\nu}_e)$	22	25	30	10	11	13	9	9	10
ES (v_x)	34	28	30	18	16	17	15	14	14
ES $(\bar{\nu}_X)$	28	27	26	15	14	13	12	11	11
total	5185	6418	7505	2364	2681	3169	2151	2307	2520
Reconstructed	Hüdelpoh			Fischer			Tamborra	1	
Reconstructed	Hüdelpoh No Osc.	NMO	IMO	Fischer No Osc.	NMO	IMO	Tamborra No Osc.	NMO	IMO
ReconstructedIBD (\bar{v}_e)	Hüdelpoh No Osc. 1936	NMO 1939	IMO 1935	Fischer No Osc. 1186	NMO 1260	IMO 1437	Tamborra No Osc. 2505	NMO 2283	IMO 1786
ReconstructedIBD ($\bar{\nu}_e$)ES (ν_e)	Hüdelpoh No Osc. 1936 38	NMO 1939 39	IMO 1935 39	Fischer No Osc. 1186 22	NMO 1260 29	IMO 1437 26	Tamborra No Osc. 2505 46	NMO 2283 33	IMO 1786 37
ReconstructedIBD ($\bar{\nu}_e$)ES (ν_e)ES ($\bar{\nu}_e$)	Hüdelpoh No Osc. 1936 38 9	NMO 1939 39 8	IMO 1935 39 8	Fischer No Osc. 1186 22 5	NMO 1260 29 6	IMO 1437 26 6	Tamborra No Osc. 2505 46 12	NMO 2283 33 10	IMO 1786 37 8
ReconstructedIBD ($\bar{\nu}_e$)ES (ν_e)ES ($\bar{\nu}_e$)ES ($\bar{\nu}_e$)ES (ν_x)	Hüdelpoh No Osc. 1936 38 9 12	NMO 1939 39 8 12	IMO 1935 39 8 12	Fischer No Osc. 1186 22 5 9	NMO 1260 29 6 8	IMO 1437 26 6 8	Tamborra No Osc. 2505 46 12 10	NMO 2283 33 10 12	IMO 1786 37 8 12
ReconstructedIBD ($\bar{\nu}_e$)ES (ν_e)ES ($\bar{\nu}_e$)ES ($\bar{\nu}_x$)ES ($\bar{\nu}_x$)	Hüdelpoh No Osc. 1936 38 9 12 10	NMO 1939 39 8 12 10	IMO 1935 39 8 12 10	Fischer No Osc. 1186 22 5 9 7	NMO 1260 29 6 8 7	IMO 1437 26 6 8 7	Tamborra No Osc. 2505 46 12 10 8	NMO 2283 33 10 12 9	IMO 1786 37 8 12 10

Time Evolution until 0.12 s (SN@10kpc, NMO)

Reconstructed Energy (SN@10kpc, NMO)

Angular Distribution of Events: $\cos \theta_{SN}$ (SN@10kpc, NMO)

- θ_{SN} : between true SN direction and e⁺
- Almost flat distribution
- Forward inclination due to higher energy $\bar{\nu_e}~(\mathrm{e^+})$

- θ_{SN} : between true SN direction and e⁻
- Peak at $\cos \theta_{\rm SN} \sim 1$

Yuri Kashiwagi

2023/3/3(Fri) @SN v workshop

Pointing Accuracy at 1σ [°]

 Wilson							
NMO	IMO	-					
2.51±0.08	2.81±0.09	-					
		-					

Mori	
NMO	IMO
4.55±0.14	4.55 ± 0.14

Fisc	her	
NN	10	IMO
6.07±	0.19	6.93±0.22

Wilson

NMO	IMO
0.035 ± 0.003	0.028 ± 0.002

Mori	
NMO	IMO
0.037 ± 0.004	0.034 ± 0.004

Fischer	
NMO	IMO
0.040 ± 0.006	0.033 ± 0.005

Vakazato	
----------	--

NMO	IMO		
4.01±0.13	4.27 ± 0.14		

Hüdelpohl						
NMO		IMO				
5.11±0.1	6	5.01±0.16				

Tamborra				
	NMO	IMO		
	5.09 ± 0.16	4.67±0.15		

Nakazato

Hüdelpohl

 $0.036 \pm 0..004$

NMO

NMO	IMO
0.040 ± 0.004	0.033 ± 0.003

IMO

 0.036 ± 0.004

 Better pointing 	
accuracy with	
Higher ES/IBD rati	0.

• For SN at 10 kpc:

in Wilson model

(SK-Gd's goal)

3° accuracy

is achieved

3-7°

		Tamborra	a a
IMO		NMO	IMO
033±0.005	Ì	0.028 ± 0.004	0.038 ± 0.005

Yuri Kashiwagi

ES/IBD

Ratio

Summary and Prospects Kasiwagi et al. in prep.

Summary

- First systematic study on SK's response and pointing accuracy since SK-Gd
- SK's responses to SN at 10kpc are simulated using six SN models by data format unification
 - SK's response varies in models, reflecting the *t*, *E* structure difference among models
 - indicating that SN model discrimination using SK's response is possible
- Pointing accuracy for SN at 10kpc varies in 3-7 $^{\circ}$
 - Wilson model achieves 3° accuracy (SK-Gd's goal)
 - Other models do not achieve it due to small statistics \rightarrow need efforts to improve S/N ratio

Prospects

- Quantitative discrimination of SN models using SK's response
- Exploring SK's response with more variety of SN models
- Improvements in pointing accuracy
 - by modifying the event reconstruction/neutron tagging algorithm.
- Can SK-Gd discriminate these SN candidates' explosion?

Back up (2023/3/3)

2023/3/3(Fri) @SN v workshop

SNWATCH: real-time supernova monitoring system @ SK

- Event reconstruction
 - Event vertex reconstruction
 - Event direction reconstruction
 - Event energy reconstruction
- Determination of SN direction
 - Dividing events into Next slide prompt/delayed candidates
 - Neutron tagging to flag IBD events
 - Maximum Likelihood Fit
- Alert Issue
 - SNWATCH aims to release the alert within less than ~1 min from the ν burst detection in SK

Block diagram of SNWATCH.

Event Selection and Neutron tagging in SNWATCH

Determination of Supernova Direction in SNWATCH

Neutrino Oscillation in SKSNSim

- Matter effect for 3-flavor ν oscillation inside the supernova
 - $N_{\nu_i}^{gen}$: the # of ν_i ($i = e, x, x = \mu$ or τ) generated in a collapsing star
 - $N_{\nu_i}^{sur}$: the # of ν_i ($i = e, x, x = \mu$ and τ) at the stellar surface

Neutrino oscillation in NMO

Normal Mass Ordering: $m_1^2 < m_2^2 \ll m_3^2$

Neutrino oscillation in IMO

Inverted Mass Ordering: $m_3^2 \ll m_1^2 < m_2^2$

$$\begin{split} N_{\nu_{e}}^{sur} &= N_{\nu_{x}}^{gen} \\ N_{\nu_{e}}^{sur} &= N_{\nu_{e}}^{gen} + N_{\nu_{x}}^{gen} \\ N_{\nu_{x}}^{sur} &= N_{\nu_{e}}^{gen} \times \cos^{2} \theta_{12} + N_{\bar{\nu}_{x}}^{gen} \times \sin^{2} \theta_{12} \\ N_{\bar{\nu}_{e}}^{sur} &= N_{\bar{\nu}_{e}}^{gen} \times \cos^{2} \theta_{12} + N_{\bar{\nu}_{x}}^{gen} \times \sin^{2} \theta_{12} \\ N_{\bar{\nu}_{x}}^{sur} &= N_{\bar{\nu}_{e}}^{gen} \times \sin^{2} \theta_{12} + N_{\bar{\nu}_{x}}^{gen} \times (1 + \cos^{2} \theta_{12}) \\ N_{\bar{\nu}_{x}}^{sur} &= N_{\bar{\nu}_{e}}^{gen} \times \sin^{2} \theta_{12} + N_{\bar{\nu}_{x}}^{gen} \times (1 + \cos^{2} \theta_{12}) \\ N_{\bar{\nu}_{x}}^{sur} &= N_{\bar{\nu}_{e}}^{gen} \times \sin^{2} \theta_{12} + N_{\bar{\nu}_{x}}^{gen} \times (1 + \cos^{2} \theta_{12}) \\ N_{\bar{\nu}_{x}}^{sur} &= N_{\bar{\nu}_{e}}^{gen} + N_{\bar{\nu}_{x}}^{gen} \\ N_{\bar{\nu}_{x}}^{sur} &= N_{\bar{\nu}_{x}}^{sur} \\ N_{\bar{\nu}_{x}}^{sur} &= N_{\bar{\nu}_{x}}^{sur} \\ N_{\bar{\nu}_{$$

Oscillation parameter: $\sin^2 \theta_{12} = 0.307 \ (\cos^2 \theta_{12} = 0.693)$

 $N_{\nu_{e}}^{sur} = N_{\nu_{r}}^{gen}$

Alert issue in SNWATCH

- Three types of alarm
 - **golden**: event cluster >7MeV, with uniform vertex distribution, cluster size ≥ 100
 - **normal**: event cluster >7MeV, with uniform vertex distribution, $25 \le$ cluster size<100
 - **silent**: event cluster >7MeV, with uniform vertex distribution, cluster size<25
- SNWATCH sends the golden alarm to:
 - SNEWS 1.0 (SuperNova Early Warning System 1.0)
 P. Antonioli et al., New Journal of Physics 6 (2004) 114.
 K. Scholberg, Astronomische Nachrichten: Astronomical Notes 329 (2008) 337–339.
 - IAU CBAT (International Astronomical Union Central Bureau for Astronomical Telegrams) http://www.cbat.eps.harvard.edu/
 - ATEL (Astronomer's telegram) <u>http://www.astronomerstelegram.org/</u> R. E. Rutledge, Publication of the Astronomical Society of the Pacific 110 (1998) 754.
 - GCN (The Gamma-ray Coordinates Network) <u>http://gcn.gsfc.nasa.gov</u>
 S. D. Barthelmy et al., in AIP Conference Proceedings , vol. 526, pp. 731–735, American Institute of Physics. 2000
- False alarm rate
 - once in 9.0×10^7 years (=90 million years) for golden alarm
 - once in 4.7×10^5 years (=470 thousand years) for normal alarm

Difficulty in Performing Realistic SN simulation

Supernova Input **Supernova** Distance Neutrino • For realistic SN simulation, Model Position Oscillation parameters [kpc] noise is added in mccomb sn, SK MC **SKSNSim** resulting in a loss of for 3000 MC samples SKG4 original information supernova (generated) simulation generated in SKSNSim. mccomb sn in SK Association **SNWATCH Reformat Process** • To identify 3000 MC samples $t_{\rm true} - t_{\rm reco} < 0.02 \ \mu s$ 7 MeV (reconstructed) which type of interaction Supernova Direction Fitter threshold the reconstructed event was, $t_{\rm true} - t_{\rm reco} < 0.02 \ \mu s$ is used. tru<u>e ¹⁶O</u> true true ¹⁶O true IBD NC (ν_{e}) Association $CC(v_e)$ $ES(v_e)$ = identification of interaction type $< 0.02 \ \mu s$ < 0.02 µs $> 0.02 \ \mu s$ • Average association efficiency: 93% 6..... →<...... other than NC (Nakazato model) $> 0.02 \,\mu s$ time *m*-th *n*-th • If the ν does not deposit enough energy, reco. event reco. event it is difficult to know the true interaction type. $(ES(v_e))$ $(160 \text{ NC} (\nu_{e}))$ Misidentified as ¹⁶O CC (ν_{e})! Identified as $ES(v_e)!$

SN detection prospects

Nakamura, Ko, et al. MNRAS 461.3 (2016): 3296-3313.

- SK-Gd has been aimed to determine SN direction with ~3° accuracy
- Large telescope's FOV (field of view) e.g.,
 - Subaru(8.2 m in diameter) Hyper Supreme-Cam: ~1.5 °
 - Vera C. Rubin Observatory LSST (8.4 m in diameter): ~3.5 °

Fig. 2.22: Detection prospects of galactic supernovae [57]. (Top) The histograms of dust-attenuated plateau magnitudes of core-collapse supernovae and their respective percentage relative to the total core-collapse supernovae. (Bottom) The typical ranges of optical magnitude and fields of view (FOV) of various optical telescopes are shown by shaded rectangles: ASAS-SN (All-Sky Automated Survey for SuperNovae), Blanco, CFHT (Canada France Hawaii Telescope), Evryscope, LSST (Large Synoptic Survey Telescope), Pan-STARRS (Panoramic Survey Telescope and Rapid Response System), Subaru, and ZTF (Zwicky Transient Facility). The left-pointing arrow represents the optical magnitude sensitive to the naked eye. Pointing Accuracy of SK (pure water, ~ 5°) and SK-Gd (~ 3°) are represented by the horizontal dashed lines and labeled.

2023/3/3(Fri) @SN v workshop

SN Distance vs. Pointing Accuracy

ML fitter: Maximum Likelihood Fitter

HP fitter: HEALPix Fitter

made by Guillaume-san (SK Collaboration meeting 2022 Autumn)

Results (Back up)

$\cos \theta_{\rm SN}$ with tagging inefficiency (Nakazato SN@10kpc NMO)

- Neutron tagging efficiency in SNWATCH: 45.63%
- (100-45.63)=54.37% of IBD events are not flagged
 → worsening pointing accuracy
- Improvement of neutron tagging efficiency in SNWATCH is needed.

Reconstructed energy vs. $\cos \theta_{\rm SN}$ (Nakazato SN@10kpc NMO)

Table 4.5: Pointing accuracy at 1σ in the unit of degree for six models with three oscillation cases. For each model, the gray column represents which of NMO and IMO provides better pointing accuracy.

	Wilson			Nakazato		
	No Osc.	NMO	IMO	No Osc.	NMO	IMO
Pointing accuracy [°]	3.01±0.10	2.51±0.08	2.81 ± 0.09	4.51±0.14	4.01±0.13	4.27 ± 0.14

	Mori			Hüdelpohl		
	No Osc.	NMO	IMO	No Osc.	NMO	IMO
Pointing accuracy [°]	4.91±0.16	4.55±0.14	4.55 ± 0.14	5.41±0.17	5.11±0.16	5.01±0.16

	Fischer			Tamborra		
	No Osc.	NMO	IMO	No Osc.	NMO	IMO
Pointing accuracy [°]	7.15±0.23	6.07±0.19	6.93±0.22	4.61±0.15	5.09±0.16	4.67±0.15

Table 4.6: The ratio of ES relative to IBD for six models with three oscillation cases. For each model, the gray column represents which of the NMO and IMO provides a higher ratio of ES/IBD.

	Wilson			Nakazato		
	No Osc.	NMO	IMO	No Osc.	NMO	IMO
ES/IBD	0.031 ± 0.003	0.035 ± 0.003	0.028 ± 0.002	0.039 ± 0.004	0.040 ± 0.004	0.033 ± 0.003

	Mori			Hüdelpohl		
	No Osc.	NMO	IMO	No Osc.	NMO	IMO
ES/IBD	0.039 ± 0.004	0.037 ± 0.004	0.034 ± 0.004	0.036 ± 0.004	0.036±0004	0.036 ± 0.004

	Fischer			Tamborra		
	No Osc.	NMO	IMO	No Osc.	NMO	IMO
ES/IBD	0.036 ± 0.006	0.040 ± 0.006	0.033 ± 0.005	0.030 ± 0.004	0.028±0.004	0.038 ± 0.005

Observed events vs. Pointing Accuracy (10kpc, No Osc./NMO/IMO)

Observed events vs. Pointing Accuracy (10kpc, No Osc.)

Observed events vs. Pointing Accuracy (10kpc, NMO)

Observed events vs. Pointing Accuracy (10kpc, IMO)

Prospects (Back up)

- SN model discrimination
- Identification of Nearby SN candidates

Model Discrimination using Likelihood

SN model discrimination with Hyper-K Abe, K., et al. *ApJ* 916.1 (2021): 15.

- Employ the method of Abe, K., et al. *ApJ* 916.1 (2021): 15.
- Using simulated SN with a fixed # of total events
- Calculate the difference of log-likelihood for models A and B:

$$\Delta L = L_A - L_B$$
$$L = \sum_{i=1}^{N_{obs}} \ln\left(\sum_{\alpha} N_{i,\alpha}\right)$$

- *i*: (time, energy) bin index
- α : interaction channel index
- If $|\Delta L| > 5$, it is judged as a successful discrimination

Extracted from Fig. 4. $\Delta L = L_{black} - L_{red}$

Identification of Nearby SN candidates

Mukhopadhyay, M., et al. *ApJ* 899.2 (2020): 153

Figure 2. Illustration of nearby ($D \le 1$ kpc) core collapse supernova candidates. Each star's spectral type, name, mass, and distance is shown in labels. See Table A1 for details and references.

Average minimum separation: 1.4 [deg] 70% of total candidates have their nearest neighborhood within 12.8 [deg]

Pre-SN candidates

			Tal Candidate Pre	esupernova Stars	padhyay, M., e [.]	t al. <i>ApJ</i> 899.2	(2020): 153
N	Catalog Name	Common Name	Constellation	Distance (kpc)	Mass (M_{\odot})	R.A.	Decl.
1	HD 116658	Spica/ α Virginis	Virgo	$0.077 \pm 0.004^{\rm a}$	$11.43^{+1.15}_{-1.15}$ b	13:25:11.58	-11:09:40.8
2	HD 149757	ζ Ophiuchi	Ophiuchus	$0.112\pm0.002^{\mathrm{a}}$	20.0 ^c	16:37:09.54	-10:34:01.53
3	HD 129056	lpha Lupi	Lupus	0.143 ± 0.003^{a}	$10.1^{+1.0}_{-1.0}$ d	14:41:55.76	-47:23:17.52
4	HD 78647	λ Velorum	Vela	$0.167\pm0.003^{\mathrm{a}}$	$7.0^{+1.5e}_{-1.0}$	09:07:59.76	-43:25:57.3
5	HD 148478	Antares/ α Scorpii	Scorpius	0.169 ± 0.030^{a}	$11.0 - 14.3^{f}$	16:29:24.46	-26:25:55.2
6	HD 206778	ϵ Pegasi	Pegasus	0.211 ± 0.006^{a}	$11.7^{+0.8d}_{-0.8}$	21:44:11.16	+09:52:30.0
7	HD 39801	Betelgeuse/ α Orionis	Orion	0.222 ± 0.040^{r}	$11.6^{+5.0g}_{-3.9}$	05:55:10.31	+07:24:25.4
8	HD 89388	q Car/V337 Car	Carina	$0.230 \pm 0.020^{ m p}$	$6.9^{+0.6d}_{-0.6}$	10:17:04.98	-61:19:56.3
9	HD 210745	ζ Cephei	Cepheus	$0.256\pm0.006^{\mathrm{p}}$	$10.1^{+0.1d}_{-0.1}$	22:10:51.28	+58:12:04.5
10	HD 34085	Rigel/ β Orion	Orion	$0.264 \pm 0.024^{\rm a}$	$21.0^{+3.0h}_{-3.0}$	05:14:32.27	-08:12:05.90
11	HD 200905	ξ Cygni	Cygnus	0.278 ± 0.029^{p}	8.0 ⁱ	21:04:55.86	+43:55:40.3
12	HD 47839	S Monocerotis A	Monoceros	$0.282\pm0.040^{\rm a}$	29.1 ^j	06:40:58.66	+09:53:44.71
13	HD 47839	S Monocerotis B	Monoceros	$0.282 \pm 0.040^{\rm a}$	21.3 ^j	06:40:58.57	+09:53:42.20
14	HD 93070	w Car/V520 Car	Carina	$0.294 \pm 0.023^{\mathrm{p}}$	$7.9^{+0.1d}_{-0.1}$	10:43:32.29	-60:33:59.8
15	HD 68553	NS Puppis	Puppis	0.321 ± 0.032^{p}	9.7 ^d	08:11:21.49	-39:37:06.8
16	HD 36389	CE Tauri/119 Tauri	Taurus	$0.326 \pm 0.070^{\mathrm{p}}$	$14.37^{+2.00k}_{-2.77}$	05:32:12.75	+18:35:39.2
17	HD 68273	γ^2 Velorum	Vela	0.342 ± 0.035^a	$9.0\substack{+0.61\-0.6}$	08:09:31.95	-47:20:11.71
18	HD 50877	o ¹ Canis Majoris	Canis Major	0.394 ± 0.052^{p}	$7.83^{+2.0}_{-2.0}$ d	06:54:07.95	-24:11:03.2
19	HD 207089	12 Pegasi	Pegasus	0.415 ± 0.031^{p}	$6.3^{+0.7d}_{-0.7}$	21:46:04.36	+22:56:56.0
20	HD 213310	5 Lacertae	Lacerta	$0.505\pm 0.046^{\rm a}$	$5.11^{+0.18m}_{-0.18}$	22:29:31.82	+47:42:24.8
21	HD 52877	σ Canis Majoris	Canis Major	$0.513\pm0.108^{\mathrm{p}}$	$12.3^{+0.1d}_{-0.1}$	07:01:43.15	-27:56:05.4
22	HD 208816	VV Cephei	Cepheus	$0.599 \pm 0.083^{\mathrm{p}}$	$10.6^{+1.0d}_{-1.0}$	21:56:39.14	+63:37:32.0
23	HD 196725	θ Delphini	Delphinus	$0.629 \pm 0.029^{\mathrm{p}}$	$5.60^{+3.0n}_{-3.0}$	20:38:43.99	+13:18:54.4
24	HD 203338	V381 Cephei	Cepheus	$0.631 \pm 0.086^{\mathrm{p}}$	12.0°	21:19:15.69	+58:37:24.6
25	HD 216946	V424 Lacertae	Lacerta	0.634 ± 0.075^{p}	$6.8^{+1.0}_{-1.0}$ q	22:56:26.00	+49:44:00.8
26	HD 17958	HR 861	Cassiopeia	$0.639 \pm 0.039^{\mathrm{p}}$	$9.2^{+0.5}_{-0.5}$ d	02:56:24.65	+64:19:56.8
27	HD 80108	HR 3692	Vela	$0.650 \pm 0.061^{\mathrm{p}}$	$12.1^{+0.2}_{-0.2}$ d	09:16:23.03	-44:15:56.6
28	HD 56577	145 Canis Major	Canis Major	$0.697 \pm 0.078^{\mathrm{p}}$	$7.8^{+0.5}_{-0.5}$ d	07:16:36.83	-23:18:56.1
29	HD 219978	V809 Cassiopeia	Cassiopeia	0.730 ± 0.074^{p}	$8.3^{+0.5d}_{-0.5}$	23:19:23.77	+62:44:23.2
30	HD 205349	HR 8248	Cygnus	0.746 ± 0.039^{p}	$6.3^{+0.7}_{-0.7}$ d	21:33:17.88	+45:51:14.5
31	HD 102098	Deneb/ α Cygni	Cygnus	$0.802\pm0.066^{\rm s}$	$19.0^{+4.0}_{-4.0}$ s	20:41:25.9	+45:16:49.0

Yuri Kashiwagi

Minimum Angular Separation between Pre-SN candidates

Ν

Catalog/Common Name	Min. Ang. Separation (deg)	Nearest Neighbor Name	Nearest Neighbor Number
HD 116658/Spica	39.66	HD 129056/ α Lupi	3
HD 149757/ ζ Ophiuchi	15.97	HD 148478/Antares	5
HD 129056/α Lupi	29.73	HD 148478/Antares	5
HD 78647/ λ Velorum	1.73	HD 80108/HR 3692	27
HD 148478/Antares	15.97	HD 149757/ ζ Ophiuchi	2
HD 206778/ ϵ Pegasi	13.08	HD 207089/12 Pegasi	19
HD 39801/Betelgeuse	11.59	S Mono A/B	12/13
HD 89338/q Car	3.30	HD 93070/w Car	14
HD 210745/ ζ Cephei	5.69	HD 208816/VV Cephei	22
HD 34085/Rigel	18.60	HD 39801/Betelgeuse	7
HD 200905/ ζ Cygni	4.39	HD 102098/Deneb	31
HD 47839/S Mono A	11.60	HD 39801/Betelgeuse	7
HD 47839/S Mono B	11.60	HD 39801/Betelgeuse	7
HD 93070/w Car	3.30	HD 89338/q Car	8
HD 68553/NS Puppis	7.72	HD 68273/ γ^2 Velorum	17
HD 36389/119 Tauri	12.50	HD 39801/Betelgeuse	7
HD 68273/ γ^2 Velorum	7.72	HD 68553/NS Puppis	15
HD 50877/ o^1 Canis Majoris	4.12	HD 52877/ σ Canis Majoris	21
HD 207089/12 Pegasi	13.08	HD 206778/ ϵ Pegasi	6
HD 213310/5 Lacertae	4.88	HD 216946/V424 Lacertae	25
HD 52877/ σ Canis Majoris	4.12	HD 50877 $/o^1$ Canis Majoris	18
HD 208816/VV Cephei	5.69	HD 210745/ ζ Cephei	9
HD 196725/ θ Delphini	16.39	HD 206778/ ϵ Pegasi	6
HD 203338/V381 Cephei	6.72	HD 208816/VV Cephei	22
HD 216946/V424 Lacertae	4.88	HD 213310/5 Lacertae	20
HD 17958/HR 861	23.49	HD 219978/V809 Cassiopeia	29
HD 80108/HR 3692	1.73	HD 78647/ λ Velorum	4
HD 56577/145 Canis Majoris	5.22	HD 50877/ o^1 Canis Majoris	18
HD 219978/V809 Cassiopeia	9.33	HD 208816/VV Cephei	22
HD 205349/HR 8248	5.38	HD 200905/ ζ Cygni	11
HD 102098/Deneb	4.39	HD 200905/ ζ Cygni	11

Table A2Mukhopadhyay, M., et al. ApJ 899.2 (2020): 153Minimum Angular Separation between Presupernova Candidates