スーパーカミオカンデでの 超新星ニュートリノ観測における 酸素原子核反応の研究

岡山大学 中西史美 2023年3月3日 第9回超新星ニュートリノ研究会@九州大学伊都キャンパス

Outline

- Introduction
 - Neutrino observation in Super-Kamiokande (SK)
 - Oxygen interaction with supernova neutrinos
 - Neutral current reaction
- Previous study
- Analysis
 - Simulation method
 - Comparison of the energy spectrum between supernova models
- Summary and Future prospect

Neutrino observation in Super-Kamiokande(SK)

• Several interactions are introduced into supernova neutrino simulator in SK $\bar{\nu}_e + p \rightarrow n + e^+$ (88%/89%) (Inverse beta decay) [1] $\nu_e + e^- \rightarrow \nu_e + e^-$ (1.5%/1.5%) (Elastic scattering) [2] $\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-$ (<1%/<1%) (Elastic scattering) [3] $\nu_r + e^- \rightarrow \nu_r + e^-$ (1%/1%) (Elastic scattering) [4] $\nu_{e} + {}^{16}O \rightarrow e^{-} + {}^{16}F$ (2.5%/<1%) (16O interactions: charged current) [5] $\overline{\nu}_{o} + {}^{16}O \rightarrow e^{+} + {}^{16}N$ (1.5%/1%) (16O interaction: charged current) [6] $v_r + {}^{16}O \rightarrow v_r + O^*/N^* + \gamma$ (5%/6%) (16O interaction: neutral current) [7]

(Number): % of the number of events for each interaction observed in SK(with NH(MSW)/without oscillation)

Cross section

Oxygen interactions become non-negligible in higher energy region

Oxygen interaction in supernova neutrinos

Charged current(CC) React with v_e/\bar{v}_e and emits e^-/e^+

 \rightarrow reported in previous this workshop

Neutral current(NC) Reacts with all neutrinos

→simulate NC reactions realistically

✓Independent on neutrino oscillation
→Possible to access the total flux of supernova neutrinos

Outline

- Introduction
 - Neutrino observation in Super-Kamiokande (SK)
 - Oxygen interaction with supernova neutrinos
 - Neutral current reaction
- Previous study
- Analysis
 - Simulation method
 - Comparison of the energy spectrum between supernova models
- Summary and Future prospect

Neutral current reaction

• Emits proton or neutron when ¹⁶O is excited above the particle threshold

✓¹⁵N^{*} and ¹⁵O^{*} emit only gamma-ray

K. Langanke, P. Vogel, and E. Kolbe et al(1996)

Illustration of a giant resonance

¹⁵ N* excited states [MeV]	¹⁵ O* excited states [MeV]	
5.18	5.27	8.32
6.18	6.33	8.57
6.69	7.16	9.05
7.28	7.56	9.76

Neutral current reaction

• Emits proton or neutron when ¹⁶O is excited above the particle threshold

Studies of the NC reactions observed in SK more precisely

K. Langanke, P. Vogel, and E. Kolbe et al(1996)

- Issues in the previous study
 - Had not assumed a realistic supernova model →Introduce Fermi-Dirac distribution
 - Realistic energy resolution was not introduced \rightarrow apply 14%/ $\sqrt{(E/10MeV)}$

Outline

- Introduction
 - Neutrino observation in Super-Kamiokande (SK)
 - Oxygen interaction with supernova neutrinos
 - Neutral current reaction
- Previous study
- Analysis
 - Simulation method
 - Comparison of the energy spectrum between supernova models
- Summary and Future prospect

Simulation methods

• Flow of the simulation

- SN model(13, $30M_{\odot}$) with Normal ordering
 - Energy of NC signal in SK: < 10 MeV
 - $30M_{\odot}$ case has higher average neutrino energy
 - \rightarrow Larger number of events expected

Supernova (SN) and Black hole (BH) model (30M_☉) with normal ordering BH model has higher average neutrino energy
→Can see clear peak of NC reaction in the BH model

Energy spectrum by time

• SN model $(30M_{\odot})$ with normal ordering

Average neutrino energy in the early phase is higher than one in the late phase \rightarrow NC reaction is dominant below 10 MeV

Energy spectrum by time

• BH model with normal ordering

A black hole is formed at t~0.84sec.

NC signal can be seen clearly with passing time

Summary and Future prospect

- Currently, several neutrino interactions are introduced in SN event simulation in SK.
 - Focus on the neutrino interaction with $^{16}\mathrm{O}$
 - Introduced NC reaction into supernova neutrino event generator in SK
- Simulated Supernova neutrino events using several supernova models
 - SN model $(13, 30 M_{\odot})$ and BH model $(30 M_{\odot})$
- Looked at a reconstructed energy spectrum
 - A peak of the NC reaction can be confirmed on BH model
- Future prospect
- Possible to access supernova models by looking at below 10 $\ensuremath{\mathrm{MeV}}$

- SN model $(13M_{\odot})$ comparison of neutrino oscillation
 - NC reaction does not depend on neutrino oscillation

- SN model $(30M_{\odot})$ comparison of neutrino oscillation
 - NC reaction does not depend on neutrino oscillation

• SN model $(20M_{\odot})$ normal ordering

• SN model $(30M_{\odot})$ normal ordering

	T_{rev} =300 ms
30 <i>M</i> ⊙BH	20 <i>M</i> ⊙SN
model	model

反応	30 <i>M</i> ⊙BH model	20 <i>M</i> ⊙SN model
$\bar{\nu_e} + p$	18332	2993
$v_e + {}^{16}O$	2217	27.28
$\bar{\nu_e}$ + ¹⁶ 0	1282	24.14

Neutrino energy (MeV)

• BH model

