ニュートリノ集団振動の漸近的な振る舞い

財前 真理
 （早稲田大学PD）

共同研究者：長倉洋樹（NAOJ）
新学術「地下宇宙」第9回超新星ニュートリノ研究会 2023／03／02－03＠九州大学

超新星爆発とニュートリノ輸送

$$
\begin{gathered}
\text { ニュートリノ輸送計算 } \\
\rightarrow \text { フレーバー分布 }
\end{gathered}
$$

ニュートリノ集団振動

超新星中心部：$N v \sim 10^{58}\left(\mathrm{~L} \sim 10^{53} \mathrm{erg} / \mathrm{s}\right)$ ．
\rightarrow ニュートリノ同士の相互作用が卓越する。

$$
H_{\nu \nu}=\sqrt{2} G_{\mathrm{F}} \int \frac{\mathrm{~d}^{3} q^{\prime}}{(2 \pi)^{3}}\left(1-\boldsymbol{v} \cdot \boldsymbol{v}^{\prime}\right)\left(\rho_{\nu}^{\prime}-\bar{\rho}_{\nu}^{\prime}\right)
$$

運動量交換

> c.f., Pantalone '92

Duan＋＇06
（非線形）自己相互作用
原始中性子星
（ニュートリノ球）

高速フレーバー変換

高速フレーバー変換（Fast Flavor Conversion，FFC）

1．集団振動モードのうちの1つ（フレーバー不安定性）
2．振動スケール：～（ $\left.G_{\mathrm{F}} n_{v}\right)^{-1} \lesssim O(\mathrm{~cm})$ or O（ns）
Izaguirre＋${ }^{`} 17$
＜＜星構造のスケール

$$
G_{\boldsymbol{v}}^{e x}=\sqrt{2} G_{\mathrm{F}} \int \frac{E^{2} \mathrm{~d} E}{2 \pi^{2}}\left[\left(f_{\nu_{e}}-f_{\bar{\nu}_{e}}\right)-\left(f_{\nu_{x}}-f_{\bar{\nu}_{x}}\right)\right]
$$

$$
=\text { ELN } \quad-\quad \text { XLN }
$$

もし $\boldsymbol{v}_{x}=\overline{\boldsymbol{v}}_{x}$ なら，この条件はELNの みで決まる。
（reasonable in CCSNe）

角度クロッシング

線形解析によるFFCに対する必要十分条件：

ELN－XLN角度分布での
 クロッシングの存在

FFCの発生／成長

ローカルな条件

Space－time diagram of ELN－angular crossings in CCSNe

非一様空間でのFFC

Wu＋＇21

Richers＋＇21

Zaizen＋＇21

Bhattacharyya＋＇21

Zaizen \＆Nagakura＇22

Nagakura \＆Zaizen＇22

非一様空間でのFFC

Richers＋＇21

Bhattacharyya＋＇21

Nagakura \＆Zaizen＇22

支配方程式

Quantum Kinetic Equation：$\left(t ; z ; E_{\nu}, \theta_{\nu}\right)$
c．f．，Boltzmann equation

$$
\mathrm{i}\left(\partial_{t}+\underline{v_{z} \partial_{z}}\right) \rho=[\mathcal{H}, \rho]+\mathrm{i} \mathrm{C}
$$

$$
\frac{1}{c} \frac{\partial f}{\partial t}+\frac{\partial f}{\partial s}=\left[\frac{1}{c} \frac{\delta f}{\delta t}\right]_{\text {collision }}
$$

c．f．加藤さん＇s talk
密度行列：

$$
\rho=\left(\begin{array}{ll}
f_{\nu_{e}} \\
\rho_{e e} & \rho_{e x} \\
\rho_{e x}^{*} & \rho_{x x}
\end{array}\right)_{f_{\nu_{x}}}
$$

単なる分布関数ではなく混合状態も考慮。

ニュートリノ自己相互作用のHamiltonian ：

$$
\mathcal{H}=\mu \int \mathrm{d} v^{\prime}\left(1-v v^{\prime}\right)\left[g_{v^{\prime}} \rho_{v^{\prime}}-\bar{g}_{v^{\prime}} \bar{\rho}_{v^{\prime}}\right]
$$

$$
\mu=\sqrt{ } 2 G_{\mathrm{F}} n_{v}: \text { 振動スケール } \sim O\left(\mathrm{~cm}^{-1}\right)
$$

ELN角度分布モデル

$$
G_{\boldsymbol{v}}^{e}=\sqrt{2} G_{\mathrm{F}} \int \frac{E^{2} \mathrm{~d} E}{2 \pi^{2}}\left[f_{\nu_{e}}(\boldsymbol{v})-f_{\bar{\nu}_{e}}(\boldsymbol{v})\right]=g_{\nu_{e}}(v)-g_{\bar{\nu}_{e}}(v)
$$

電子型ニュートリノ（ELN）のみ。初期のXLNはゼロとする。

$$
g_{\nu} \propto \exp \left[-(v-1)^{2} / 2 \xi_{\nu}^{2}\right]
$$

フレーパー進化計算

ニュートリノ密度行列の各成分の時間進化

計算領域

$$
\mu=\sqrt{2} G_{\mathrm{F}} n_{\nu}=0.8 \mathrm{~cm}^{-1}
$$

$$
L_{z}\left[\mu^{-1}\right]=1000 \mu^{-1}=1250 \mathrm{~cm}
$$

$$
t_{\max }\left[\mu^{-1}\right]=5000 \mu^{-1} \sim 200 \mathrm{~ns}
$$

位相空間
$N_{z} \times N_{E_{\nu}} \times N_{\theta_{\nu}}$
$=10000 \times 1 \times 256$
周期的境界条件

フレーバー進化計算

ニュートリノ密度行列の各成分の時間進化

フレーバーの空閒構造

空間平均での角度分布

FFCの安定性条件（非線形領域でも）：
ELN－XLN角度分布での
クロッシングの消滅
FFCの停止／（準）定常

空間平均での角度分布

ELN－XLNの時間進化

クロッシングの消滅

準定常状態への到達

FFC はクロッシングを無くすように進む。

漼定常状態のモデル化

準定常状態を特徴付ける量：

1．ELN－XLNクロッシングの消滅
2．ELN（XLN）に対する保存則

元の方程式：

$$
\begin{aligned}
\mathrm{i}\left(\partial_{t}+v_{z} \partial_{z}\right) \rho_{v} & =\left[H_{\nu \nu}, \rho_{v}\right] \\
& =\left[H_{E}, \rho_{v}\right]-\left[v_{z} H_{F}, \rho_{v}\right]
\end{aligned}
$$

$$
H_{E}=\sqrt{2} G_{\mathrm{F}} \int \mathrm{~d} \Gamma^{\prime} \rho_{v^{\prime}}
$$

$$
H_{F}=\sqrt{2} G_{\mathrm{F}} \int \mathrm{~d} \Gamma^{\prime} v_{z}^{\prime} \rho_{v^{\prime}}
$$

保存系

$$
\frac{\partial_{t} H_{E}}{\text { 保存則 }}+\underbrace{\partial_{z} H_{F}}_{\text {フラ (周期的境界条件) }}=0
$$

Note．
Dirichletなど別条件の場合は当然この
制約も変わる。
フラックス項のモデル化が必要？

漼定常状態のモデル化

準定常状態を特徴付ける量：
1．ELN－XLNクロッシングの消滅
2．ELN（XLN）に対する保存則

$$
50 \%
$$

＝フレーバー平衡

$$
\begin{aligned}
& P_{e e}= \begin{cases}p & \text { for } G_{v}<0 \\
1-(1-p) \frac{A}{B} & \text { for } G_{v}>0\end{cases} \\
& p=1 / 2 \quad(\text { for } 2 \text { flavor case }) \\
& A \equiv\left|\int_{G_{v}^{e x}<0} \frac{\mathrm{~d} \boldsymbol{v}}{4 \pi} G_{\boldsymbol{v}}^{e x}\right| \quad \text { For } B>A \\
& B \equiv\left|\int_{G_{v}^{e x}>0} \frac{\mathrm{~d} \boldsymbol{v}}{4 \pi} G_{\boldsymbol{v}}^{e x}\right| .
\end{aligned}
$$

－超新星爆発を理論的に理解するためには，ニュートリノ物理の完全な把握が求められる。

- ニュートリノ集団振動
- フレーバー分布の変化がダイナミクスや観測量に影響を与える。
- 高速フレーバー変換
- 角度分布におけるクロッシングによって誘発。
- ローカルな条件だが，短いスケールでフレーバーが混ざる。
- FFCの準定常状態が知りたい（モデル化したい）
- FFCの準定常状態
- クロッシングを消すようにFFCが進む。
- 境界条件からの制約（保存則など）を組み合わせることでモデル化が可能。

