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超新星爆発とニュートリノ輸送
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ニュートリノ集団振動
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原始中性子星
(ニュートリノ球)

ν

ν
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超新星中心部：Nν ~ 1058   (L ~ 1053erg/s).
→ニュートリノ同士の相互作用が卓越する.

(非線形) 自己相互作用

c.f., Pantalone ‘92
Duan+ ‘06
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高速フレーバー変換

クロッシング

もし 𝝂𝒙 = #𝝂𝒙なら、この条件はELNの
みで決まる。
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= ELN － XLN
(Electron Lepton Number) (Heavy-leptonic one)

𝝂𝒆過剰

"𝝂𝒆過剰
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= cos ✓⌫

(reasonable in CCSNe)

Izaguirre+ ‘17

高速フレーバー変換 (Fast Flavor Conversion, FFC)
1. 集団振動モードのうちの１つ（フレーバー不安定性）
2. 振動スケール： ~ (GF nν)-1 ≲ O(cm) or O(ns)

<< 星構造のスケール
3. ニュートリノレプトン数角度分布のクロッシングがトリガー
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角度クロッシング

6

Time

Any type of crossings (PNS convection)
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(nucleon-scattering + α    1 + cold matter)
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Space-time diagram of ELN-angular crossings in CCSNe
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FIG. 4. Space-time diagram for appearance of ELN crossings. The bold red line portrays a time
trajectory for the shock wave in exploding models. The thin and dashed line represents the counterpart
of shock trajectory for non-exploding models. The color code for enclosed regions distinguishes types
of ELN crossing. The green, blue, and brown color denote Type I, Type II, and any type of crossings,
respectively. In each region, we provide some representative characteristics of ELN-crossings. The
remark ”Exp-only” denotes that the ELN-crossing appears only in exploding models. See text for
more detail.

anism for these is di↵erent. In Sec. III B, we conduct an
in-depth analysis of their physical origin.

We provide a schematic space-time diagram of ELN
crossings in Fig. 4. This figure summarizes the over-
all trends of crossings observed in our CCSN models.
We note that crossings relevant to PNS convection and
the pre-shock region drawn in Fig. 4 are not included in
Fig. 3. There is a technical reason why we do not include
the case with PNS convection in Fig. 3. This issue will be
discussed later. To facilitate the readers’ understanding,
the color in Fig. 4 distinguishes types of ELN-crossings.
Below, we turn our attention to the physical origin of
ELN crossing generation.

B. Generation mechanism of ELN crossings

1. Type-II crossings at early post-bounce phase

Let us start by analyzing the Type-II crossings that
appear at the early post-bounce phase (⇠ 100 ms) in all
CCSN models (see the top left panel in Fig. 3). We first
present the result from the 12 solar mass model as a rep-
resentative case. The progenitor-dependence is discussed
later. In Fig. 5, we show Mollweide projections of the
ELN crossing and some important quantities at 130 km
for the 12 solar mass model case. We find that the Type
II crossing has a rather scattered distribution (see the

top left panel). To see the trend more quantitatively, we
show �Gout in the left middle panel in Fig. 5, which cor-
responds to the ELN at µ = 1. Here �Gout and �Gin

are defined as follows. The energy-integrated number of
neutrinos at µ = 1 and �1 are written as

Gout =

Z
d(

"3

3
)fout("),

Gin =

Z
d(

"3

3
)fin("),

(2)

respectively, where " denotes the neutrino energy in units
of MeV. We stress that both fout and fin in Eq. 2 are the
basic output of our angular reconstruction computation
complemented by the ray-tracing method (see Sec. II B).
Here �G is the di↵erence of the ⌫e and ⌫̄e G values:

�G = G⌫e �G⌫̄e , (3)

where we omit the subscript ”out” or ”in” in Eq. 3. As
shown in Fig. 5, we find that ⌫̄e dominates over ⌫e in
some regions (blue-colored area), and these regions are
in one-to-one correspondence to the regions of Type-II
crossings. The one-to-one correspondence is attributed
to the fact that ⌫e always overwhelms ⌫̄e in µ = �1
(incoming) direction.
We find some interesting correlations between the

Type-II crossings and other physical quantities. These
correlations provide useful insight for studying the phys-
ical origin of the crossings. To quantify the correlations,

Nagakura+ ’21

ローカルな条件

Morinaga ’22, Dasgupta ’22

ELN-XLN角度分布での
クロッシングの存在

FFCの発生/成長

線形解析によるFFCに対する必要十分条件：

c.f. 赤穗さん’s talk
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非一様空間でのFFC
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FIG. 3. Snapshots of P3(z, vz) at di↵erent simulation times for the same systems shown in Fig. 2 when the initial perturbations
have grown to the non-linear regime. Flavor waves with coherent structures develop and propagate. Small scale structures
form when flavor waves interact and breaks the coherent structure.

B. Non-linear regime: point-source like
perturbations

When the perturbations grow to the non-linear regime,
wave-like oscillatory features develop [37]. In Fig. 3, we
show the snapshots of P3(z, vz) at di↵erent times for
↵ = 0.9 and 1.1 using the same point-source like per-
turbations as in Sec. III A. For the case of ↵ = 0.9, the
flavor evolution behavior of the system is in general sim-
ilar to those reported in Ref. [37]. Flavor waves develop
and mainly propagate toward the positive z direction.
This is consistent with the growth of perturbations in
the linear regime discussed earlier. An interesting fea-
ture shown here is that although the flavor oscillations
initially can a↵ect all vz modes, illustrated by the verti-
cal stripes in the upper two sub-panels in Fig. 3(a), this
e↵ect diminishes when time proceeds and flavor conver-
sions are roughly confined in vz

>
⇠ vz,c ' 0.65.

Another interesting feature is: When the forward-
traveling wavefront interacts with the slowly backward
propagating part after t >⇠ 1200, it pushes the whole pat-
tern to drift toward positive z direction. Meanwhile, this
interaction breaks the coherent wave-like pattern. Sub-
structures in smaller scale develop such that the orienta-
tion of the neutrino polarization vectors varies rapidly in
z for vz >

⇠ vz,c. Consequently, although at each location
z, neutrinos with di↵erent vz

>
⇠ vz,c still have |P| = 1,

the “average polarization vector” over the z domain can
shrink due to their misalignment. Such a flavor state was

referred as “flavor depolarization” in Ref. [40, 41] and we
will discuss its behavior in more detail in the next section.
For vz <

⇠ vz,c, most neutrinos remain una↵ected.
For ↵ = 1.1 shown in panel (b), flavor conversions

quickly develop toward both the positive and negative z

directions and produces coherent and wave-like structure,
once again consistent with that indicated by the growth
of perturbations in the linear regime. Similarly, when
the forward and backward propagating modes interact
after t >

⇠ 665, smaller structures develop and cause a
major part of vz reaching closer to flavor depolarization.
One important di↵erence from the previous ↵ = 0.9 case
is: now flavor depolarization happens mostly in vz

<
⇠

vz,c ' 0.45. We will also discuss this feature and its
consequences in Sec. IVB.
For the other ⌫ELN spectra with ↵ = 1.0, 1.2 and 1.3,

the behaviors are qualitatively similar to that with ↵ =
1.1. Full simulation animations are available at https:
//mengruwuu.github.io/COSEv1dbox/.

C. Non-linear regime: random perturbations

Now, let us look at how the flavor systems evolve when
we adopt di↵erent seed of random perturbations. We
show again P3(z, vz) at di↵erent time snapshots in Fig. 4
for ↵ = 0.9 and 1.1. With random perturbations, some
locations have larger P? initially such that flavor con-
versions develop faster around those locations (see the

Wu+ ‘21

A. Effective two-flavor case only with ELN crossing

We first present the case omitting the vacuum term
in the effective two-flavor case. Figure 3 shows the
time evolution of the angle-averaged off-diagonal term
jρnKex j ¼ hjðP̃K

ω;vÞð1Þ − iðP̃K
ω;vÞð2Þji. The flavor evolution in

Fourier space displays two branches at early time
t < 6 μs. The spatial Fourier space that the excited modes
span is consistent with the two right unstable branches in
Fig. 2. On the other hand, the dispersion relation gives
three branches, and the leftmost flavor instability with the
smallest growth rate is missing. The growth rate of the
leftmost flavor instability is about ImΩ ∼ ð4 μsÞ−1 and
an order of magnitude smaller than the peak in the
rightmost branch with the largest growth rate. It means
that the initial perturbation grows only about 4.5 times by
the critical time t ∼ 6 μs when the nonlinear effects
appear. As shown in Fig. 3, spatial modes that would
otherwise remain stable grow fast via the nonlinear
convolution term after t ∼ 6 μs and a cascade develops
into all Fourier modes. Therefore, the other unstable
branches reach the nonlinear regime first and cover up
this tiny flavor instability before it grows sufficiently.
Finally, all spatial Fourier modes receive the flavor
instability, and complicated oscillation behaviors appear.
Figure 4 shows the time evolution of the off-diagonal

term jρnKex j for some spatial modes. The top panel is for two
spatial modes 0.66 m−1 and 0.693 m−1, and the bottom is
for spatial modes 0.8778 m−1 and 1.056 m−1. For each

panel, one corresponds to an unstable mode (as we can
confirm in Fig. 2) and the other to a stable mode. The
growth rates during the linear phase, estimated from Fig. 4,
are ImΩ ¼ 1.57 μs−1 and 2.50 μs−1 for K ¼ 0.693 m−1

and 0.8778 m−1, respectively. These growth rates are
consistent with the peak of the two branches predicted
by the dispersion relation in Fig. 2. On the other hand, the
stable modes in Fig. 2 indeed do not grow in the linear
phase before t ∼ 6 μs, while they quickly grow after that
due to the nonlinear effect.
As a comparison, we perform a similar simulation

including the vacuum term and present it in Fig. 5. In this
case, perturbation seeds are naturally given by mixing angles
and then lead to fast flavor conversion by the self-interaction
potential. The narrow components corresponding to the
middle branch in Fig. 2 is prominent, while the modes that
seem to correspond to the rightmost branch are much
broader, and there is no gap between the two branches. In
the preshock region, the self-interaction potential Φ is not

FIG. 3. The case neglecting the vacuum term within the
effective two-flavor framework. The time evolution of the
angle-averaged off-diagonal term jρnKex j for various spatial Fourier
modes K in the case neglecting the vacuum term within the
effective two-flavor framework. Spatial modes around K ¼
0.7 m−1 and 0.9 m−1 are first excited and then the flavor
instabilities spread to different modes due to the nonlinear term
after t ∼ 6 μs.

FIG. 4. The time evolution of the off-diagonal term jρnKex j for
some spatial Fourier modes in the case omitting the vacuum term.
The top panel is with K ¼ 0.66 m−1 and 0.693 m−1, inside and
outside the middle branch, respectively. The bottom panel is with
K ¼ 0.8778 m−1 and 1.056 m−1, inside and outside the right-
most branch, respectively.

NONLINEAR EVOLUTION OF FAST NEUTRINO FLAVOR … PHYS. REV. D 104, 083035 (2021)

083035-5

Zaizen+ ‘21 Zaizen & Nagakura ‘22

shown) quickly overcomes its random initial phases and
establishes a constant phase throughout the domain instead
of the planar structure seen in neμ. This is a result of the
1 ↔ 3 vacuum mixing that grows linearly regardless of the
amplitude of the initial perturbations. The fastest growing
mode, however, still grows on top of the vacuum oscil-
lations. Within 0.2 ns the fastest growing mode overtakes
the vacuum oscillations and creates a phase pattern just like

in neμ. On the other hand, nμτ (also not shown) has a phase
distribution that is negative the phase neμ for the first 0.2 ns.
This reflects the fact that some of neμ induced by the fast
flavor instability is subsequently being pushed into nμτ by
the vacuum potential. After t ¼ 0.2 ns, the phase of nμτ also
transforms to an altogether different distribution, instead
varying on length scales comparable to 8 cm size of the
domain.

FIG. 2. Volume rendering of contours of constant phase of neμ for the Fiducial_1D (top row), Fiducial_2D (center row), and
Fiducial_3D (bottom row) simulations. Phases of −2π=3, 0, and 2π=3 are shown in blue, white, and red, respectively. The left column
shows the results at t ¼ 0.29 ns during the linear growth phase of the fast flavor instability, the center column shows the results at
t ¼ 0.77 ns after the instability saturates, and the right column shows the results at t ¼ 2.2 ns as the distribution is building power on
small scales. The phase of neμ demonstrates wavefronts of the fastest growing unstable mode. The Fiducial_1D data is copied into the
x and y dimensions and the Fiducial_2D data is copied into the x direction for visualization purposes. Although there is significant
multidimensional structure, the 3D results are qualitatively and quantitatively similar to the 1D and 2D results.

RICHERS, WILLCOX, and FORD PHYS. REV. D 104, 103023 (2021)

103023-6

Richers+ ‘21

∂thMni ¼
hM1i
2

!
∂2
nhMniþ

1

n
∂nhMni

"
: ð6Þ

The full derivation is given in the Supplemental Material
[46]. Here hMni denotes the spatially coarse-grained value
of Mn ¼ jMnj. Equation (6) is a diffusion-advection equa-
tion where n plays the role of space and hM1i of the
diffusion constant. Gv and initial conditions for Sv are
smooth in v, so that hMni are initially small for n ≫ 1. As
time passes, the system diffuses from low-n to high-n
multipoles.
One can obtain an analytical solution to the above partial

differential equation if hM1i is approximately constant.
First we note that Eq. (6) remains invariant under the
scaling n → an and t → a2t with a > 0. Therefore, the
solution for hMni can depend on n and t only through the
scaling variable ξ ¼ n2=t. Using ξ as the independent
variable, Eq. (6) becomes an ordinary differential equation,
2d2ξhMniþ ð1=hM1iþ 2=ξÞdξhMni ¼ 0. This has a solu-
tion hMni ¼ c1Ei½−n2=ð2hM1itÞ& þ c2, in terms of the
exponential integral Ei½x& ¼

R
x
−∞ dyey=y. This solution,

valid for large n, predicts how each hMni, starting at
hMniini, grows exponentially, peaks at t

peak
n ≈ n2=ð2hM1iÞ,

and asymptotes to hMnifin at large times. The finite
behavior at large t is crucial to be able to truncate the
multipole expansion. The solution shows that kinematic
decoherence has a strong dependence on hM1i, which is
initially 1 − A=2 for our ELNs. Thus, for small lepton
asymmetry A the effective diffusion coefficient hM1i is
larger. Further, shrinking of hM1i results in less kinematic
decoherence at later times, and as time progresses the
system reaches an almost steady state with no further
diffusion in multipole space. On the other hand for larger
lepton asymmetry, i.e., smaller hM1iini, there is less
diffusion and depolarization throughout.
To verify the above analytical solution, we numerically

solve Eq. (3) for our suite of ELNs. In Fig. 3, we show an
illustrative result for Sk

v, the hM1i for all the ELNs, and
various hMni for A ¼ 0.2. The top left panel shows how the
flavor composition, even for a single v mode, is scrambled
within picoseconds and sub-mm distances. This timescale
depends logarithmically on the initial seed but the final
state is insensitive to it. In the right panel, we see hM1i is
approximately constant at early and late epochs, but
decreases at t ≈ 3.5 ps. We will explain the decrease in
just a moment, but using the approximately constant hM1i
in our analytical solutions for hMni, we find qualitative
agreement with the numerical results shown in the bottom
panel of Fig. 3. The sharp change in hM1iini at t ≈ 3.5 ps
prevents a perfect agreement. Higher multipoles (fainter
curves) rise, peak, and fall asymptotically, one-by-one, as
predicted.
Transverse relaxation.—For the lower-n multipoles,

e.g., hM0i, hM1i, etc., the preceding discussion does not

apply. Rather, comparing the top and bottom panels in
Fig. 4, one sees that hSk

vi shrinks if and when hH⊥
v i ≈ hHk

vi.
We now explain this phenomenon. Naively, the spatial
average of Eq. (3) is dthSvi ¼ hHvi × hSvi, which can be
visualized as a spin hSvi precessing around the magnetic
field hHvi. Note that Hv ≈ −ð13M0 þ vM1Þ in a frame
corotating with the M0-M1 plane, for our choice of

FIG. 3. Multipole diffusion: Evolution of Sk
v for v ¼ 0.5 and

A ¼ 0.2 (top left) and hM1i for various ELNs (top right).
Evolution of hMni for large n and A ¼ 0.2 (bottom panel).

FIG. 4. Relaxation: Evolution of hSk
vi for v ¼ '1, '0.5 (top

panels) for A ¼ 0.9 (left) and A ¼ 0.2 (right). hHk
vi and hH⊥

v i, in
solid and dashed lines, respectively (bottom panels).

PHYSICAL REVIEW LETTERS 126, 061302 (2021)

061302-3

Bhattacharyya+ ‘21

and we find that the system eventually achieves a quasis-
teady state. One of the striking results in this Letter is that
the degree of flavor conversion does not hinge on nν in the
quasisteady phase. This trend is more visible in time-
averaged distributions. We compute the time-averaged f by
integrating over the time of 0.3 ms ≤ t ≤ 0.5 ms; the
results are shown in the right panels of Fig. 1. Figure 2
also displays the radial profiles of the time-averaged
number density of νe and the ratio of nνx to nνe þ nνx in
the left and right panel, respectively, for all models (for
model-Γ8, we compute the time-averaged f in the time
range of 0.06 ms ≤ t ≤ 0.12 ms). Both figures illustrate
that the degree of flavor mixing is universal. It should also
be mentioned that the angular resolutions in our simula-
tions do not compromise the time-averaged profile (see the
red dashed line in Fig. 2 displaying the result of model-
Γ1h). The result of model-Γ8, that corresponds to the
model with the highest spatial resolution and the modest Γ,
also strengthens our conclusion. As shown in Fig. 2, the
results of other models clearly approach to model-Γ8 with
increasing nν. This lends confidence to our claim that the
case of Γ ¼ 1 (no reduction of nν) can be studied from
these results.
Temporal and spatial variations of FFC are vigorous even

after the system reaches a quasisteady state, indicating that
the system never achieves the exact steady state. On the other

hand, these fluctuations become mild with increasing radius
(see the region of 80 km≲ r≲ 100 km in Fig. 1). In the
sense of classical neutrino transport, this feature is at odds,
because temporal variations generated at the inner region can
be sustained in the free-streaming region. The suppression of
inhomogeneity is, hence, dictated by quantum effects. Since
neutrinos propagating along different trajectories have ran-
dom temporal variations, these variations can cancel each
other through self-interactions. We note that this is different
from so-called “kinematic decoherence” (see, e.g., Ref. [1]),
albeit with a similar mechanism. In fact, the vacuum
oscillation has nothing to do with them, and more impor-
tantly, the flavor equipartition has been almost achieved at
the inner region. Our result suggests that temporal variations
of FFC occurring in the deep inner core would be smeared
out during the flight in the free streaming region.
Finally, we analyze angular distributions of neutrinos in

the quasisteady state, which provides new insight into
understanding the nonlinear saturation of FFC. In this
analysis, we pay special attention to angular distributions of
the electron neutrino lepton number (ELN) and XLN
(heavy neutrino lepton number). We find that the time-
averaged ELN angular distribution subtracted by that of the
XLN (hereafter, we refer to it as ELN-XLN angular
distribution) is a key quantity. As shown in the right panel
of Fig. 3, ELN-XLN angular crossings, which exist at the
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FIG. 1. All plots show fxx=ðfee þ fxxÞ as functions of radius and cos θν. Top and bottom panels show results of model-Γ1 and model-
Γ4, respectively. The left and middle panels display the result at t ¼ 0.1 ms and 0.5 ms, respectively. The right panels depict time-
averaged distributions in a quasisteady state phase (0.3 ms ≤ t ≤ 0.5 ms). The black solid and dashed lines represent trajectories of
neutrinos emitted in the direction of cos θν ¼ 0 (perpendicular to the radial direction) and cos θν ¼ 0.5 (ELN crossing point),
respectively, at the inner boundary (50 km).

PHYSICAL REVIEW LETTERS 129, 261101 (2022)
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Nagakura & Zaizen ‘22
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FIG. 3. Snapshots of P3(z, vz) at di↵erent simulation times for the same systems shown in Fig. 2 when the initial perturbations
have grown to the non-linear regime. Flavor waves with coherent structures develop and propagate. Small scale structures
form when flavor waves interact and breaks the coherent structure.

B. Non-linear regime: point-source like
perturbations

When the perturbations grow to the non-linear regime,
wave-like oscillatory features develop [37]. In Fig. 3, we
show the snapshots of P3(z, vz) at di↵erent times for
↵ = 0.9 and 1.1 using the same point-source like per-
turbations as in Sec. III A. For the case of ↵ = 0.9, the
flavor evolution behavior of the system is in general sim-
ilar to those reported in Ref. [37]. Flavor waves develop
and mainly propagate toward the positive z direction.
This is consistent with the growth of perturbations in
the linear regime discussed earlier. An interesting fea-
ture shown here is that although the flavor oscillations
initially can a↵ect all vz modes, illustrated by the verti-
cal stripes in the upper two sub-panels in Fig. 3(a), this
e↵ect diminishes when time proceeds and flavor conver-
sions are roughly confined in vz

>
⇠ vz,c ' 0.65.

Another interesting feature is: When the forward-
traveling wavefront interacts with the slowly backward
propagating part after t >⇠ 1200, it pushes the whole pat-
tern to drift toward positive z direction. Meanwhile, this
interaction breaks the coherent wave-like pattern. Sub-
structures in smaller scale develop such that the orienta-
tion of the neutrino polarization vectors varies rapidly in
z for vz >

⇠ vz,c. Consequently, although at each location
z, neutrinos with di↵erent vz

>
⇠ vz,c still have |P| = 1,

the “average polarization vector” over the z domain can
shrink due to their misalignment. Such a flavor state was

referred as “flavor depolarization” in Ref. [40, 41] and we
will discuss its behavior in more detail in the next section.
For vz <

⇠ vz,c, most neutrinos remain una↵ected.
For ↵ = 1.1 shown in panel (b), flavor conversions

quickly develop toward both the positive and negative z

directions and produces coherent and wave-like structure,
once again consistent with that indicated by the growth
of perturbations in the linear regime. Similarly, when
the forward and backward propagating modes interact
after t >

⇠ 665, smaller structures develop and cause a
major part of vz reaching closer to flavor depolarization.
One important di↵erence from the previous ↵ = 0.9 case
is: now flavor depolarization happens mostly in vz

<
⇠

vz,c ' 0.45. We will also discuss this feature and its
consequences in Sec. IVB.
For the other ⌫ELN spectra with ↵ = 1.0, 1.2 and 1.3,

the behaviors are qualitatively similar to that with ↵ =
1.1. Full simulation animations are available at https:
//mengruwuu.github.io/COSEv1dbox/.

C. Non-linear regime: random perturbations

Now, let us look at how the flavor systems evolve when
we adopt di↵erent seed of random perturbations. We
show again P3(z, vz) at di↵erent time snapshots in Fig. 4
for ↵ = 0.9 and 1.1. With random perturbations, some
locations have larger P? initially such that flavor con-
versions develop faster around those locations (see the

Wu+ ‘21

A. Effective two-flavor case only with ELN crossing

We first present the case omitting the vacuum term
in the effective two-flavor case. Figure 3 shows the
time evolution of the angle-averaged off-diagonal term
jρnKex j ¼ hjðP̃K

ω;vÞð1Þ − iðP̃K
ω;vÞð2Þji. The flavor evolution in

Fourier space displays two branches at early time
t < 6 μs. The spatial Fourier space that the excited modes
span is consistent with the two right unstable branches in
Fig. 2. On the other hand, the dispersion relation gives
three branches, and the leftmost flavor instability with the
smallest growth rate is missing. The growth rate of the
leftmost flavor instability is about ImΩ ∼ ð4 μsÞ−1 and
an order of magnitude smaller than the peak in the
rightmost branch with the largest growth rate. It means
that the initial perturbation grows only about 4.5 times by
the critical time t ∼ 6 μs when the nonlinear effects
appear. As shown in Fig. 3, spatial modes that would
otherwise remain stable grow fast via the nonlinear
convolution term after t ∼ 6 μs and a cascade develops
into all Fourier modes. Therefore, the other unstable
branches reach the nonlinear regime first and cover up
this tiny flavor instability before it grows sufficiently.
Finally, all spatial Fourier modes receive the flavor
instability, and complicated oscillation behaviors appear.
Figure 4 shows the time evolution of the off-diagonal

term jρnKex j for some spatial modes. The top panel is for two
spatial modes 0.66 m−1 and 0.693 m−1, and the bottom is
for spatial modes 0.8778 m−1 and 1.056 m−1. For each

panel, one corresponds to an unstable mode (as we can
confirm in Fig. 2) and the other to a stable mode. The
growth rates during the linear phase, estimated from Fig. 4,
are ImΩ ¼ 1.57 μs−1 and 2.50 μs−1 for K ¼ 0.693 m−1

and 0.8778 m−1, respectively. These growth rates are
consistent with the peak of the two branches predicted
by the dispersion relation in Fig. 2. On the other hand, the
stable modes in Fig. 2 indeed do not grow in the linear
phase before t ∼ 6 μs, while they quickly grow after that
due to the nonlinear effect.
As a comparison, we perform a similar simulation

including the vacuum term and present it in Fig. 5. In this
case, perturbation seeds are naturally given by mixing angles
and then lead to fast flavor conversion by the self-interaction
potential. The narrow components corresponding to the
middle branch in Fig. 2 is prominent, while the modes that
seem to correspond to the rightmost branch are much
broader, and there is no gap between the two branches. In
the preshock region, the self-interaction potential Φ is not

FIG. 3. The case neglecting the vacuum term within the
effective two-flavor framework. The time evolution of the
angle-averaged off-diagonal term jρnKex j for various spatial Fourier
modes K in the case neglecting the vacuum term within the
effective two-flavor framework. Spatial modes around K ¼
0.7 m−1 and 0.9 m−1 are first excited and then the flavor
instabilities spread to different modes due to the nonlinear term
after t ∼ 6 μs.

FIG. 4. The time evolution of the off-diagonal term jρnKex j for
some spatial Fourier modes in the case omitting the vacuum term.
The top panel is with K ¼ 0.66 m−1 and 0.693 m−1, inside and
outside the middle branch, respectively. The bottom panel is with
K ¼ 0.8778 m−1 and 1.056 m−1, inside and outside the right-
most branch, respectively.
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shown) quickly overcomes its random initial phases and
establishes a constant phase throughout the domain instead
of the planar structure seen in neμ. This is a result of the
1 ↔ 3 vacuum mixing that grows linearly regardless of the
amplitude of the initial perturbations. The fastest growing
mode, however, still grows on top of the vacuum oscil-
lations. Within 0.2 ns the fastest growing mode overtakes
the vacuum oscillations and creates a phase pattern just like

in neμ. On the other hand, nμτ (also not shown) has a phase
distribution that is negative the phase neμ for the first 0.2 ns.
This reflects the fact that some of neμ induced by the fast
flavor instability is subsequently being pushed into nμτ by
the vacuum potential. After t ¼ 0.2 ns, the phase of nμτ also
transforms to an altogether different distribution, instead
varying on length scales comparable to 8 cm size of the
domain.

FIG. 2. Volume rendering of contours of constant phase of neμ for the Fiducial_1D (top row), Fiducial_2D (center row), and
Fiducial_3D (bottom row) simulations. Phases of −2π=3, 0, and 2π=3 are shown in blue, white, and red, respectively. The left column
shows the results at t ¼ 0.29 ns during the linear growth phase of the fast flavor instability, the center column shows the results at
t ¼ 0.77 ns after the instability saturates, and the right column shows the results at t ¼ 2.2 ns as the distribution is building power on
small scales. The phase of neμ demonstrates wavefronts of the fastest growing unstable mode. The Fiducial_1D data is copied into the
x and y dimensions and the Fiducial_2D data is copied into the x direction for visualization purposes. Although there is significant
multidimensional structure, the 3D results are qualitatively and quantitatively similar to the 1D and 2D results.
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∂thMni ¼
hM1i
2

!
∂2
nhMniþ

1

n
∂nhMni

"
: ð6Þ

The full derivation is given in the Supplemental Material
[46]. Here hMni denotes the spatially coarse-grained value
of Mn ¼ jMnj. Equation (6) is a diffusion-advection equa-
tion where n plays the role of space and hM1i of the
diffusion constant. Gv and initial conditions for Sv are
smooth in v, so that hMni are initially small for n ≫ 1. As
time passes, the system diffuses from low-n to high-n
multipoles.
One can obtain an analytical solution to the above partial

differential equation if hM1i is approximately constant.
First we note that Eq. (6) remains invariant under the
scaling n → an and t → a2t with a > 0. Therefore, the
solution for hMni can depend on n and t only through the
scaling variable ξ ¼ n2=t. Using ξ as the independent
variable, Eq. (6) becomes an ordinary differential equation,
2d2ξhMniþ ð1=hM1iþ 2=ξÞdξhMni ¼ 0. This has a solu-
tion hMni ¼ c1Ei½−n2=ð2hM1itÞ& þ c2, in terms of the
exponential integral Ei½x& ¼

R
x
−∞ dyey=y. This solution,

valid for large n, predicts how each hMni, starting at
hMniini, grows exponentially, peaks at t

peak
n ≈ n2=ð2hM1iÞ,

and asymptotes to hMnifin at large times. The finite
behavior at large t is crucial to be able to truncate the
multipole expansion. The solution shows that kinematic
decoherence has a strong dependence on hM1i, which is
initially 1 − A=2 for our ELNs. Thus, for small lepton
asymmetry A the effective diffusion coefficient hM1i is
larger. Further, shrinking of hM1i results in less kinematic
decoherence at later times, and as time progresses the
system reaches an almost steady state with no further
diffusion in multipole space. On the other hand for larger
lepton asymmetry, i.e., smaller hM1iini, there is less
diffusion and depolarization throughout.
To verify the above analytical solution, we numerically

solve Eq. (3) for our suite of ELNs. In Fig. 3, we show an
illustrative result for Sk

v, the hM1i for all the ELNs, and
various hMni for A ¼ 0.2. The top left panel shows how the
flavor composition, even for a single v mode, is scrambled
within picoseconds and sub-mm distances. This timescale
depends logarithmically on the initial seed but the final
state is insensitive to it. In the right panel, we see hM1i is
approximately constant at early and late epochs, but
decreases at t ≈ 3.5 ps. We will explain the decrease in
just a moment, but using the approximately constant hM1i
in our analytical solutions for hMni, we find qualitative
agreement with the numerical results shown in the bottom
panel of Fig. 3. The sharp change in hM1iini at t ≈ 3.5 ps
prevents a perfect agreement. Higher multipoles (fainter
curves) rise, peak, and fall asymptotically, one-by-one, as
predicted.
Transverse relaxation.—For the lower-n multipoles,

e.g., hM0i, hM1i, etc., the preceding discussion does not

apply. Rather, comparing the top and bottom panels in
Fig. 4, one sees that hSk

vi shrinks if and when hH⊥
v i ≈ hHk

vi.
We now explain this phenomenon. Naively, the spatial
average of Eq. (3) is dthSvi ¼ hHvi × hSvi, which can be
visualized as a spin hSvi precessing around the magnetic
field hHvi. Note that Hv ≈ −ð13M0 þ vM1Þ in a frame
corotating with the M0-M1 plane, for our choice of

FIG. 3. Multipole diffusion: Evolution of Sk
v for v ¼ 0.5 and

A ¼ 0.2 (top left) and hM1i for various ELNs (top right).
Evolution of hMni for large n and A ¼ 0.2 (bottom panel).

FIG. 4. Relaxation: Evolution of hSk
vi for v ¼ '1, '0.5 (top

panels) for A ¼ 0.9 (left) and A ¼ 0.2 (right). hHk
vi and hH⊥

v i, in
solid and dashed lines, respectively (bottom panels).
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and we find that the system eventually achieves a quasis-
teady state. One of the striking results in this Letter is that
the degree of flavor conversion does not hinge on nν in the
quasisteady phase. This trend is more visible in time-
averaged distributions. We compute the time-averaged f by
integrating over the time of 0.3 ms ≤ t ≤ 0.5 ms; the
results are shown in the right panels of Fig. 1. Figure 2
also displays the radial profiles of the time-averaged
number density of νe and the ratio of nνx to nνe þ nνx in
the left and right panel, respectively, for all models (for
model-Γ8, we compute the time-averaged f in the time
range of 0.06 ms ≤ t ≤ 0.12 ms). Both figures illustrate
that the degree of flavor mixing is universal. It should also
be mentioned that the angular resolutions in our simula-
tions do not compromise the time-averaged profile (see the
red dashed line in Fig. 2 displaying the result of model-
Γ1h). The result of model-Γ8, that corresponds to the
model with the highest spatial resolution and the modest Γ,
also strengthens our conclusion. As shown in Fig. 2, the
results of other models clearly approach to model-Γ8 with
increasing nν. This lends confidence to our claim that the
case of Γ ¼ 1 (no reduction of nν) can be studied from
these results.
Temporal and spatial variations of FFC are vigorous even

after the system reaches a quasisteady state, indicating that
the system never achieves the exact steady state. On the other

hand, these fluctuations become mild with increasing radius
(see the region of 80 km≲ r≲ 100 km in Fig. 1). In the
sense of classical neutrino transport, this feature is at odds,
because temporal variations generated at the inner region can
be sustained in the free-streaming region. The suppression of
inhomogeneity is, hence, dictated by quantum effects. Since
neutrinos propagating along different trajectories have ran-
dom temporal variations, these variations can cancel each
other through self-interactions. We note that this is different
from so-called “kinematic decoherence” (see, e.g., Ref. [1]),
albeit with a similar mechanism. In fact, the vacuum
oscillation has nothing to do with them, and more impor-
tantly, the flavor equipartition has been almost achieved at
the inner region. Our result suggests that temporal variations
of FFC occurring in the deep inner core would be smeared
out during the flight in the free streaming region.
Finally, we analyze angular distributions of neutrinos in

the quasisteady state, which provides new insight into
understanding the nonlinear saturation of FFC. In this
analysis, we pay special attention to angular distributions of
the electron neutrino lepton number (ELN) and XLN
(heavy neutrino lepton number). We find that the time-
averaged ELN angular distribution subtracted by that of the
XLN (hereafter, we refer to it as ELN-XLN angular
distribution) is a key quantity. As shown in the right panel
of Fig. 3, ELN-XLN angular crossings, which exist at the
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FIG. 1. All plots show fxx=ðfee þ fxxÞ as functions of radius and cos θν. Top and bottom panels show results of model-Γ1 and model-
Γ4, respectively. The left and middle panels display the result at t ¼ 0.1 ms and 0.5 ms, respectively. The right panels depict time-
averaged distributions in a quasisteady state phase (0.3 ms ≤ t ≤ 0.5 ms). The black solid and dashed lines represent trajectories of
neutrinos emitted in the direction of cos θν ¼ 0 (perpendicular to the radial direction) and cos θν ¼ 0.5 (ELN crossing point),
respectively, at the inner boundary (50 km).
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・FFCはどういう状態に漸近するか？
・何がその状態を決めるのか？

・そもそもモデル化できそうか？
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relativity have been studied by Cardall & Mezzacappa (2003)
and Cardall et al. (2005). A time-dependent Boltzmann transport
scheme in multi-energy and multi-angle has been recently
developed for neutrino-radiation hydrodynamics in one and two
dimensions (Livne et al. 2004). The Boltzmann equation in 2D
axisymmetric geometry is discretized in conservative form using
the discrete-ordinate (Sn) method by dropping the velocity-
dependent terms. The 2D transport method incorporated to
the neutrino-radiation hydrodynamics is applied to a time-
dependent 2D test of a post-bounce supernova core. The
neutrino-radiation hydrodynamics code (VULCAN-2D) has
been utilized for the 2D supernova simulations with a variant
of the flux-limited method as mentioned above (Ott et al. 2008;
Brandt et al. 2011). More recently, a new algorithm to solve
the neutrino transfer in two dimensions has been developed to
conform the Lorentz transformation in the transport equation
(Hubeny & Burrows 2007). They derive the formulation using
the mixed-frame approach by evaluating the collision term in
the comoving frame with a Taylor expansion regarding Lorentz
shifts. The new formalism has been applied to one-dimensional
tests of stationary solutions and proto-neutron star cooling.

Our study here is to establish the numerical solver of
the Boltzmann equation for neutrinos in 3D, for the first
time, beyond the previous developments in 2D. We develop
a numerical code to solve the Boltzmann equation for the
multi-energy and multi-angle group in 3D spatial coordinates.
We take an approach to solve the Boltzmann equation in the
inertial frame, on which we report below, as a basis for our
developments. We extend the formulation and its numerical
implementation by evaluating the collision term according to
the Lorentz transformation as a next step, which will be reported
separately elsewhere.

3. FORMULATIONS

3.1. Boltzmann Equation

In our numerical code for the neutrino transfer, we solve the
Boltzmann equation for the neutrino distribution by a discrete-
ordinate (Sn) method. Our starting point is the Boltzmann
equation,

1
c

∂f

∂t
+

∂f

∂s
=

[
1
c

δf

δt

]

collision
, (1)

for the neutrino distribution function, f (r, t; ε, n), at position,
r , and time, t, along path length, s. The right-hand side is the
collision term, which expresses the time rate of change due
to the neutrino reactions such as emissions, absorptions, and
scatterings. We prepare the neutrino distributions,

f in(r, θ,φ, t; εin, nin), (2)

where εin and nin are the neutrino energy and the unit vector
of neutrino momentum, respectively, in the inertial frame. We
adopt spatial variables, r, θ , φ, in the spherical coordinate
system. The unit vector of neutrino momentum is defined with
respect to the radial direction along the coordinate r as in
Figure 1. We adopt the neutrino angles, θν , φν , and the neutrino
energy, εin, to designate the neutrino momentum.

We take an approach in the inertial (laboratory) frame to write
down the equation of neutrino transfer and to handle the neutrino
quantities. The way of solutions of neutrino transfer differs very
much depending on the frame (Mihalas & Mihalas 1999). The
two major ways in the comoving and inertial frames have both
easiness and difficulty in the procedures of solution. On the one
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Figure 1. Definition of the neutrino direction. The direction of neutrino
propagation is specified by the neutrino angle variables, θν and φν , in the
spherical coordinate system. The neutrino angle, θν , is measured from the radial
direction. The unit vectors along the radial and theta directions are depicted in
the spherical coordinate (top). The unit vector of the phi direction is defined in
the right-handed system (bottom). The neutrino angle, φν , is measured from the
theta direction.

hand, the form of the left-hand side of Equation (1) is simple in
the inertial frame, while the derivative terms in the left-hand side
are complicated with velocity-dependent terms in the comoving
frame (Buras et al. 2006). On the other hand, the collision
term can be calculated easily in the comoving frame, where
the neutrino reactions occur in the moving fluid. The collision
term in the inertial frame requires tedious procedures through
the Lorentz transformation of reaction rates from the comoving
frame in principle. In our strategy, we take the simplicity of

4

c.f., Boltzmann equation
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ニュートリノ自己相互作用のHamiltonian：

μ = √2 GF nν : 振動スケール ~ O(cm-1)

単なる分布関数ではなく
混合状態も考慮.
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電子型ニュートリノ (ELN) のみ。
初期のXLN はゼロとする。
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ELN-MuLN and ELN-TauLN simultaneously if they pos-
sess crossings. In the case that MuLN is identical to
TauLN, which is a reasonable condition in CCSNe and
BNSM, we set the flavor equilibrium point to peq = 1/3.
One-half of the transition probability of electron-type
neutrinos is transferred to each heavy-leptonic flavor as
Peµ and Pe⌧ .

There is a caveat in the approximate scheme, however.
The box-like structure in angular distributions of p would
not be realistic. In fact, we will show in Sec. III that
p does not change discontinuously at the crossing point
but rather has a smooth profile. Nevertheless, the overall
trend in asymptotic states of FFCs can be captured by
the simple structure, and we leave its improvement to
future work.

III. NUMERICAL TESTS

We perform numerical simulations on a periodic
boundary condition, which validates our approach to de-
termine asymptotic states of FFC. We assume a one-
dimensional simulation box with axial-symmetry around
the z-axis. As an initial state, we use the following ELN
angular distribution, employed as G4b in Ref. [59],

G
e
v = µ [g⌫e(v)� ↵g⌫̄e(v)] , (24)

where µ =
p
2GFn⌫e , ↵ = 0.92 is an asymmetry param-

eter, and normalized angular distribution g⌫ is defined
as

g⌫ / exp
⇥
�(v � 1)2/2⇠2⌫

⇤
(25)

with ⇠⌫e = 0.6 and ⇠⌫̄e = 0.53. We also assume that XLN
is initially zero. Then, the ELN(-XLN) angular crossing
is located at vc = 0.68 and the ELN(-XLN) number den-
sity, 1 � ↵, is positive. Hence, we can predict that FFC
proceeds so as to fill in the negative lepton number on
more forward-directional side v & vc relative to the an-
gular crossing from the above requirements.

Figure 1 shows the dispersion relation ⌦(K) satisfying
Eq. (14) for the ELN angular distribution G4b. Spatial
modes K with nonzero imaginary parts Im⌦ correspond
to unstable branches and can induce FFC in the non-
linear regime. In the bottom panel, we present the nor-
malized eigenvector |Qv| with the maximum growth rate
in the top panel and the peak amplitude is within the
negative ELN directions, vz > vc. Consequently, the ini-
tial perturbation on the flavor coherent S evolves strongly
within the crossing in the linear regime, and then flavor
conversion can occur mainly in the angular directions in
a non-linear phase. This picture agrees with the above
prediction for the non-linear saturation. The behaviors
of FFC in the non-linear regime will be demonstrated in
Sec. III C.

FIG. 1. Top: Dispersion relation of ⌦(K) including unstable
fast modes for ELN angular distribution G4b. Solid (dotted)
lines are for imaginary (real) parts of ⌦. Bottom: Normalized
amplitude |Qv| with a maximum growth rate in the top panel.
Vertical dotted line is a crossing point, and we find that the
peak is located within the negative ELN directions.

A. Setups

In the fast limit, neutrino density matrices lose the
explicit energy-dependence in the QKE. Hence, antineu-
trinos are identified to those for neutrinos, i.e., ⇢̄v =
⇢v. And we adopt a pseudo-spectral method using Fast
Fourier Transformation implemented in the FFTW3 li-
brary4 to handle the spatial advection operator in the
QKE (see Refs. [63, 66] on the detail and recent applica-
tions). Then, QKE for the spatial Fourier components in
the polarization vector configuration ⇢ / P · � is recast

4
Fastest Fourier Transform in the West, http://www.↵tw.org.
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フレーバー進化計算

計算領域

<latexit sha1_base64="YPv951tHhBVAyPVHMaYo61g8Ccc="></latexit>

Lz[µ
�1] = 1000µ�1 = 1250 cm

<latexit sha1_base64="gM4rgkE793vWbYJSdBhwWFjwM/w="></latexit>

tmax[µ
�1] = 5000µ�1 ⇠ 200 ns

<latexit sha1_base64="cfpKBHb7z//XrqU1VzwpabY6fUU="></latexit>

µ =
p
2GFn⌫ = 0.8 cm�1

位相空間
<latexit sha1_base64="O2CGCD6jat2+wTqMtnMjnPIxdq8="></latexit>

Nz ⇥NE⌫ ⇥N✓⌫

= 10000⇥ 1⇥ 256

周期的境界条件

<latexit sha1_base64="wc2bK4murcJvtueMgWOzMKVLbWg=">AAAGZ3ichVRLaxNRFD6tdqz10VZBCm5iYkUEw00NKq6KSiuImCb2oU0NM9Ob5pJ5MTONbUNcunAhgqALH2CpCxH8E27cuNNFf0Jx4aKCGxG/ezMkfU5myL3fPY/vnDnn5BqeJYKQsfWu7gMHe7RDvYf7jhw9drx/YPDEVOAu+iafNF3L9WcMPeCWcPhkKEKLz3g+123D4tNG9YbUT9e4HwjXuRcue3zO1hccURamHkJ0v+hX3FKdLzVKAymWZupJ7AaZCKQoenLuYPcaFWmeXDJpkWzi5FAIbJFOAd5ZyhAjD7I5qkPmAwml59SgPvguworDQoe0inUBp9lI6uAsOQPlbSKKhZ8PzwQNsx/sI9tkX9kntsH+7stVVxwyl2XsRtOXe6X+p0OFPx29bOwhVdpeMR4GrPf/JqnvbOEDV4HDDtUJqUxXVVUEquQpiayX2cy0tvJqs3AtP1w/x1bZT1TqPVtnX1Arp/bb/DDB869jsihjXQaXDU1ctrKTVVqhi1s8dKxNn5uQNefABxpXX+ahkrL7AeXBaSmWC7Cvq1iBQs2z5OijYcXkwO6R6r4dRZiHhZy6eWVbbHXJB6orqawC6lD6vHInr7EF5lAS8iQtsQq7Hcsq8O7FKtqsTx5wD3sSsmQsF1dTvpuLt7nYN7bGvrPViJF3YBynMcU4TqU9eMcUb8SME1dygZNkclDhkNKx/DpmUPZB/m/nlER2qQw/iWqKMaQUtEUggUmoKJ3f0kXRG7XZf7mzHfonwCxjZaNYZTUlZqu7D4FkrAbWEfXdKbpEjyNtQp2zkLfttnQ+r1Hi5TPuPV8y3hV+xWbidcjFa91cOqqwf1bb7WLzy93dmSHu3szOm3Y3mBpJZy6nsxPZ1Oj16BbupdOYmvPgv0KjdItyNIm8bXpBb+htz4bWr53Shpqm3V2Rz0na9mhn/gOw8Vqv</latexit>⇢ex

<latexit sha1_base64="V91h9+q/AsC1VMUbv0vp7kZtcw0="></latexit>

⇢ee =
1

2
(1 + P3)

ニュートリノ密度行列の各成分の時間進化
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フレーバー進化計算

<latexit sha1_base64="wc2bK4murcJvtueMgWOzMKVLbWg="></latexit>⇢ex

<latexit sha1_base64="V91h9+q/AsC1VMUbv0vp7kZtcw0=">AAAFU3icjVTPaxNBFH6NSY3V2lYvgpclMVIplEkaVASh6EUQMU3sD2xi2F1nk6Gb3WV3G9su69GDB9GLHgTBogcRvHpVvHjxZg/9E8SDhwoeFPHb6do0rU2dZXfevPe+7703b3Y0xxSez9h6X+JAMtV/MH1o4PCRwaNDwyPHZjx70dX5tG6btjunqR43hcWnfeGbfM5xudrSTD6rLVyO7LNt7nrCtm74yw6vtdSGJQyhqz5U9eGxqtu06wHnoXJRqRquqgf5MCiEVZMb/mheGVNK9YmqKxpN/0x9OMvGmRzKbiEfC1mKR8keSaSpSrfJJp0WqUWcLPIhm6SSh2ee8sTIga5GAXQuJCHtnEIaAHYRXhweKrQL+Dawmo+1FtYRpyfROqKYeF0gFcqxNfaKbbCP7DX7wn7tyRVIjiiXZczaJpY79aH7Jyo/9kW1MPvU7KB6IDRkpmLNgehdm08GnZc1CdToSE1Urb4Zp73yZKNyoZwLTrNV9hV1Pmfr7AMqtdrf9ZdTvPwU7DkZwQLujtyZlszVQi8C2RGBGAb4otXfKlxIAWyhjINI9Tcr18r9rMEsykCfoSXWZFd7Mgs8/2IVHdZ7N7mDOQNdpicXl6dgNxfvcLFP7AX7zFZjRr4Po4oueMBG564mNdFJM8AdSW3I0QnMwlqFJNCRprS5W7Y4btie/1069R97HMUqxrEMeQL0rg7cwiqKF+JbkNVmaYLubvNQpK4IW8d3W4fK/aQ8fsCdh0vas8q3nhk5++TkbP2BKnZj78y6/XrmV7q+M0PcIfmdN8ZuYaYwnj87XpwqZicvxbdJmk6iu6PgP0eTdIVKNI28H9Fbekfvk2vJn6lEKrnpmuiLMcepa6QG/wBWzCpH</latexit>

⇢ee =
1

2
(1 + P3)

ニュートリノ密度行列の各成分の時間進化
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フレーバーの空間構造

フレーバー進化
全体的な傾向として,
• 小さい構造が順次形成され
ていく.

• FFCがクロッシングの内側
のみで効いていく.

• FFCが t ~ 2000 ぐらいでほ
ぼ準定常状態に.

クロッシング
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空間平均での角度分布

ELN-XLNでは
クロッシングが消滅 !!

ELNにはまだ
クロッシングがある。

計算終了時の角度分布

ELN-XLN角度分布での
クロッシングの消滅

FFCの停止/(準)定常

FFCの安定性条件 (非線形領域でも)：



ELN-XLN の時間進化

14

空間平均での角度分布

準定常状態

クロッシングの消滅

準定常状態への到達

時間進化

クロッシング

FFC はクロッシングを無くすように進む。

<latexit sha1_base64="EDJ1ahjFf5kGhaLcmgs9Zoem4CA="></latexit>

hPeei
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準定常状態のモデル化

準定常状態を特徴付ける量：
1. ELN-XLNクロッシングの消滅
2. ELN (XLN) に対する保存則

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv

4⇡
G

ex
v

����� (20)

B ⌘

�����

Z

Gex
v >0

dv

4⇡
G

ex
v

����� . (21)

When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv

4⇡
G

ex
v

����� (20)

B ⌘

�����

Z

Gex
v >0

dv

4⇡
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ex
v

����� . (21)

When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv
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G

ex
v

����� (20)

B ⌘

�����

Z

Gex
v >0

dv

4⇡
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ex
v

����� . (21)

When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

角度積分

元の方程式：

保存則 フラックス項

(周期的境界条件)

Note.
Dirichletなど別条件の場合は当然この
制約も変わる.
フラックス項のモデル化が必要？

in prep.

保存系
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準定常状態のモデル化

50%
= フレーバー平衡

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as
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When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.
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conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv

4⇡
G

ex
v

����� (20)

B ⌘

�����

Z

Gex
v >0

dv

4⇡
G

ex
v

����� . (21)

When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.
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p = 1/2 (for 2 flavor case)

For B > A

準定常状態を特徴付ける量：
1. ELN-XLNクロッシングの消滅
2. ELN (XLN) に対する保存則
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まとめ

• 超新星爆発を理論的に理解するためには、ニュートリノ
物理の完全な把握が求められる.
– ニュートリノ集団振動
– フレーバー分布の変化がダイナミクスや観測量に影響を与える.

• 高速フレーバー変換
– 角度分布におけるクロッシングによって誘発.
– ローカルな条件だが、短いスケールでフレーバーが混ざる.
– FFCの準定常状態が知りたい (モデル化したい).

• FFCの準定常状態
– クロッシングを消すようにFFCが進む.
– 境界条件からの制約 (保存則など) を組み合わせることでモデル
化が可能.


