KamLANDにおける超新星背景ニュートリノ探索のための 機械学習を用いた背景事象除去

Background reduction by machine learning for the supernova relic neutrino search in KamLAND

Research Center for Neutrino Science, Tohoku University Minori Eizuka for KamLAND collaboration (e-mail: minori@awa.tohoku.ac.jp)

Supernova Relic Neutrino (SRN)

Kamioka Liquid-scintillator Anti-Neutrino Detector (KamLAND)

Signal: Inverse Beta Decay (IBD)

Background: atmospheric neutrino neutral current

- Space-time correlation between prompt event and delayed event is used. → Delayed coincidence
- In current analysis, atmospheric neutrino events cannot be discriminated from IBD signals.

How to discriminate signal & background

Basic concept of this analysis

Simulation tuning

Simulation consistency check: signal

Simulation consistency check: background

Fast neutron is used instead of 1.0 atm. ν candidate. 0.8 0.6 A.U. Fast neutrons and atm. ν s have 0.4 similar hit information. 0.2 Background simulation is 0 2010 consistent with real data.

Simulation consistency check: calibration

 I used composite source runs (CoGeCs) for the low energy consistency check.

(event position) \leq 150 cm from the source

Low energy simulation is consistent with real data.

KamNet: spatiotemporal deep neural network

KamNet training setup

Training data

$E_{\rm vis} = 8.5 - 30$ [MeV], detector i	detector radius $r \leq 550 [\text{cm}]$	
	training	validation
 Positron MC (signal) 	×10,000	×3,000
• Atm. ν NC MC (background)	×10,000	×3,000

Changed point from $0 u\beta\beta$ KamNet

Epoch

10th supernova neutrino workshop, Minori Eizuka

Training result & performance

- Different signal/background score distributions
 - \rightarrow Event discrimination is possible.
- Rejection efficiency (validation) saturation
 - \rightarrow The training epoch is sufficient.

Training result & performance

► AUC*1 = 0.818

 \rightarrow Its performance is better than $0\nu\beta\beta$ KamNet model.

- Similar number of hit distribution between signal/background
 - \rightarrow KamNet do not use number of hit

(it uses hit timing, charge, and special distribution).

*¹ Area Under the ROC curve
*² Receiver Operating Characteristic Curve

Number of hit distribution for KamNet training

Validation

Spallation ¹²B and fast neutron events in real data are used for the validation of simulation events.

Validation data set

- Same energy spectrum shape (flat, 8.5–13 MeV)
- Full fiducial volume $(r \le 650 \text{ cm})$

 All period (only for FN)

For KamNet,

Prospects

Interpretation of the score output

- Energy dependence
- Vertex dependence
- Characteristics of simulation and real data

Different cut criteria?

Sys. unc. of the rejection efficiency

- 1. Difference between simulation and real data $\rightarrow \sim 10\%$
- 2. Fluctuation in the trained model performance
 - \rightarrow estimation by about 100 times trial

Modification of KamNet structure

- ► Time window
 - → "When" is the most important time?
- Dropout rate
- ► Validation weight
 - → Number of ${}^{12}B \& FN$ are different.

- Atmospheric neutrino interaction is the largest background for the supernova relic neutrino search in KamLAND.
- ► We intend to reduce this background using a neural network: KamNet.
 - \rightarrow To train KamNet, simulation tuning has done.
 - \rightarrow The preliminary trained model has a promising rejection power.
- ▶ We need additional works to interpret and polish the KamNet performance.

Thank you for listening!

KamLAND collaboration meeting in Obihiro @2023 Sep.

backup