Prospects for supernova relic neutrino search in SK-Gd experiment with 0.03% Gd mass concentration

Masayuki Harada (Okayama Univ.)

10th Supernova neutrino workshop @Okayama University (Feb. 29 - Mar. 1)

Content

Supernova relic neutrino (SRN)

SK-Gd experiment

SRN search in SK-Gd

- Analysis
- Search result in SK-Gd with 0.01w%
- Current study for SRN search in SK-Gd
- Prospects for upgraged SK-Gd

Supernova relic neutrinos

- Supernova relic neutrinos (SRN) An integrated flux of the neutrinos from all past CCSNe
- SRN flux: $\Phi_{SRN} \propto \left[\begin{array}{c} SN \text{ rate} \end{array} \right] \otimes \left[\begin{array}{c} v \text{ emission from SN} \end{array} \right] \otimes \left[\begin{array}{c} Redshift \end{array} \right]$
 - → Information for star formation history
 - Evolution of star formation rate
 - SN neutrino flux
 - Black hole formation rate
 - Neutrino physics...

Supernova relic neutrinos

- Supernova relic neutrinos (SRN) An integrated flux of the neutrinos from all past CCSNe
- SRN flux: $\Phi_{SRN} \propto \left[\begin{array}{c} SN \text{ rate} \end{array} \right] \otimes \left[\begin{array}{c} v \text{ emission from SN} \end{array} \right] \otimes \left[\begin{array}{c} Redshift \end{array} \right]$
 - → Information for star formation history
 - Evolution of star formation rate
 - SN neutrino flux
 - Black hole formation rate
 - Neutrino physics...

SK-Gd experiment

SK-Gd experiment

Analysis and results

SRN signal in SK-Gd

Search for inverse-beta decay (IBD) of electron anti neutrinos

$\bar{\nu}_e + p \longrightarrow e^+ + n$

- Largest cross-section @ SRN signal range
- Simple event topology: 1 positron and 1 neutron → Require only one delayed neutrons signal

SRN search result @0.01w% Gd

- Search for SRN in the initial stage of SK-Gd was published
- Neutron detection with cut-based method (Efficiency ~ 35.6%)

SRN search result @0.01w% Gd

Ovserved 16 events consistent with background

SRN search result @0.01w% Gd

- Ovserved 16 events

Current status and prospects

Analysis update

- Developing multiple scattering reduction variable
- Neutron tagging using neutral network
- Better understanding of the NCQE interaction (→later talks)
- Investigation for new neutrino interaction model

Analysis update

- Developing multiple scattering reduction variable
- Neutron tagging using neutral network
- \bigvee Better understanding of the NCQE interaction (\rightarrow later talks)
- Investigation for new neutrino interaction model

Background: Atmospheric neutrinos

Hadronic interaction with oxygen nucleus leads to neutron emission
 NCQE

non-NCQE (CCQE)

Remove using PMT hit pattern, charge, existence of other hit cluster

Background: NCQE event reduction

Reduce by Cherenkov angle
NCQE events tend to have larger angle
NCQE

Improvement of NCQE reduction

Remaining NCQE events: Cherenkov angle is reconstructed to ~42 deg

CANNOT distinguish from SRN

Improvement of NCOE reduction

Looks like an event with more multiple scattering than electrons

Improvement of NCOE reduction

more multiple scattering than electrons

Improvement of NCQE reduction

E_{rec} [MeV]

Remaining NCQE events: Cherenkov angle is reconstructed to ~42 deg

MSG cut significantly reduces NCQE events at low-energy region

In future: Develop ML-based NCQE reduction including MSG cut

Improvement of neutron tagging

Neutron tagging using Neural Network
Vell understanding for Gd-capture gamma-rays

12 Feature variables

 $\sqrt{45.4\pm3.9\%}$ with 0.02% mis-ID \rightarrow 1.3 times improvement

Result of improvement

Significantly improved NCQE reduction x1.3 better neutron tagging

Neutron tagging in 0.03% Gd conc.

Ş Neutron tagging in 0.03% Gd conc.

Apply same NN method to SK-VII data

\rightarrow 1.4 times improvement

Summary

- First result of SRN search in SK-Gd was published
- In 2022, the Gd concentration was increased to 0.03% Ş \rightarrow neutron tagging efficiency x1.4!
- - ✓ Multiple scattering reduction
 - ✓ Neutron tagging using neutral network
 - ✓ Better understanding of the NCQE interaction (later talk)
- Analysis of data up to 2023 is also on-going.

Multitude of efforts towards understanding and reducing NCQE events