Structure Formation in the Universe

Ken Nagamine (Osaka / K-IPMU / UNLV)

z=2.06

Cosmology & Structure Formation

- title of this workshop...) no more "missing satellite problem"
- Recent **JWST** discoveries & their implications

Dark Matter & Galaxy Formation (<u>Supernova</u> feedback)

Baryons — High-z galaxies, Local dwarfs, Lya forest

Evidence of Dark Matter

— success of CDM on large scales (≥100 kpc)

- Stellar motions Lord Kelvin (1884); Kapteyn '22; Jeans'22; Oort '32
- Galaxy clusters ~80% of mass is dark (Zwicky '33)
- Galaxy rotation curves (Rubin & Ford '70)
- Galactic disk stability (stellar kinematics; Ostriker & Peebles '74)
- **Cosmic Microwave Background** (CMB) angular power spec.
- Structure formation P(k), galaxy clustering, Ly-α forest
- Gravitational lensing (strong & weak)

.

- **Bullet Cluster** (Markevich+'02; Clowe+'06)

Concordance ACDM model "

WMAP, Planck SN la

 $(\Omega_M, \Omega_\Lambda, \Omega_b, h, \sigma_8, n_s) \approx (0.3, 0.7, 0.04, 0.7, 0.8, 0.96)$

 $\Omega_{\rm DM} \approx 0.26$

"737 cosmology"

"Back-bone of structure"

`Standard Model' of Cosmic Structure Formation

Cosmic time

Press-Schechter Mass Function

Ansatz: Probability of $\delta_s > \delta_c(t)$ == fraction of mass contained in halos with mass >M

$$\mathscr{P}[>\delta_{\rm c}(t)] = \frac{1}{\sqrt{2\pi}\sigma(M)} \int_{\delta_{\rm c}(t)}^{\infty} \exp\left[-\frac{\delta_{\rm s}^2}{2\sigma^2(M)}\right] \mathrm{d}\delta_{\rm s} = \frac{1}{2} \operatorname{erfc}\left[\frac{\delta_{\rm c}(t)}{\sqrt{2}\sigma(M)}\right].$$

mass variance: $\sigma^2(M) = \langle \delta_s^2(\mathbf{x}; \mathbf{x}) \rangle$

The mass fraction: $F(>M) = 2\mathscr{P}[>\delta_c(t)].$

PS mass function: $n(M,t) dM = \frac{\overline{\rho}}{M} \frac{\partial F(>)}{\partial M}$ $=\sqrt{\frac{2}{\pi}}\frac{\overline{\rho}}{M^2}$

$$n(M_h, z)dM_h = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M_h^2} \nu e^{-\nu^2/2} \left| \frac{d\ln\nu}{d\ln M_h} \right| dM_h,$$

or,

(1974)

$$|R\rangle = \frac{1}{2\pi^2} \int_0^\infty P(k) \,\widetilde{W}^2(\mathbf{k}R) \,k^2 \,\mathrm{d}k$$

As $M \to 0$, $\mathscr{P}[>\delta_{\rm c}(t)] \to 1/2$. fudge factor

$$\frac{>M}{M} dM = 2 \frac{\overline{\rho}}{M} \frac{\partial \mathscr{P}[>\delta_{c}(t)]}{\partial \sigma} \left| \frac{d\sigma}{dM} \right| dM$$
$$= \frac{\delta_{c}}{\sigma} \exp\left(-\frac{\delta_{c}^{2}}{2\sigma^{2}}\right) \left| \frac{d\ln\sigma}{d\ln M} \right| dM.$$

$$\nu = \delta_{\rm c}(t) / \sigma(M)$$

Comparison with N-body simulation

(see also Mo & White '02)

DM halo & central galaxy

rcum-galactic medium

Intergalactic medium

dark matter halo

(cf. Spherical collapse model)

1st-order Galaxy Formation

Star, Galaxy Formation

Cooling Curve

(Radiative Cooling Rate/Function) Primordial Gas — optically thin gas

% : cooling rate per unit vol.
[erg cm⁻³ s⁻¹]

Cooling Curve @ T<104 K

Barkana & Loeb '01

cf: $T_{vir} \sim 10^4$ K for atomic cooling halo of $M_h \sim 10^8$ M_{\odot}

UV background (UVB) radiation

red: HM12

Haardt & Madau '96, '12; Faucher-Giguere+'09; Khaire & Srianand '19; ...

$$\int_{z_0}^{\infty} \mathrm{d}z \, \frac{(1+z_0)^3 \,\epsilon_{\nu}(z)}{(1+z) \,\mathrm{H}(z)} \,\mathrm{e}^{-\tau_{\mathrm{eff}}(\nu_0, \, z_0, \, z)}.$$

green: FG09

Net cooling rate with heating

solid line: net rate $\left[erg \ cm^3 \ s^{-1} \right]$

Weinberg+'97

$$t_{\rm cool} \equiv \frac{\rho \mathscr{E}}{\mathscr{C}} = \frac{3nk_{\rm B}T}{2n_{\rm H}^2\Lambda(T)} \approx 3.3$$
$$t_{\rm ff} = \sqrt{\frac{3\pi}{3\pi}} = \sqrt{\frac{3\pi f_{\rm gas}}{2\pi}} \approx 2$$

 $[cm^{-3}]$ log n

equilibrium curve

Blumenthal+'84; Peacock textbook, p.572

ACDM challenged by small-scale problems?

- Cusp-Core problem simulations predict steeper inner DM halo profile Flores & Primack '94; Moore '94
- Missing satellites problem too much substructure?
- Too-big-to-fail problem overabundance of massive & dense substructures (in CDM) that could host gals after reionization
 Boylan-Kolchin+'11
- Void phenomenon: gals in voids are too normal? Peebles '01

. . . .

 Satellite plane problem: satellites aligned in a plane for both MW and Andromeda

Klypin+'99; Moore+'99

Substructure problem?

Movie

Diemand+'06

Original Substructure Problem

Klypin+'99; Moore+'99

Bright Dwarfs: $M_{\star} \approx 10^8 M_{\odot}$ $M_{\rm vir} \approx 10^{11} M_{\odot}$ $M_{\star}/M_{\rm vir} \approx 10^{-3}$

Classical Dwarfs:

 $M_{\star} \approx 10^6 M_{\odot}$

 $M_{\star}/M_{\rm vir} \approx 10^{-4}$

Ultra-faint Dwarfs:

 $M_{\star} \approx 10^4 M_{\odot}$ $M_{\rm vir} \approx 10^9 M_{\odot}$ $M_{\star}/M_{\rm vir} \approx 10^{-5}$

Abundance Matching (AM) technique

 $M_{\rm vir} \approx 10^{10} M_{\odot}$

Substructure Problem Solved?

Garrison-Kimmel+'17 **Bullock & Boylan-Kolchin '17**

No more Missing Satellites Problem??

Latest obs by: SDSS, Pan-STARRS, DES, MagLiteS,...

~ reionization suppression scale $(M_h \sim 10^8 M_{\odot}, T_{\rm vir} \sim 10^4 K)$

(subhalos below this mass cannot host UFDs due to photo-heating by UVB)

known ultra-faint dwarfs "Too many satellites problem" Not enough dwarf gals in hydro sims if you populate only above the reionization suppression scale.

cf. Garrison-Kimmel+'17; Jethwa+18; Kim+'18; Li+19

Contact: santacruzgalaxy@gmail.com

data release on Flathub:

http://flathub.flatironinstitute.org/agora

http://agorasimulations.org

AGORA Goal & Team

• GOAL: A collaborative, multiplatform study to raise the realism and predictive power of galaxy formation simulations

• TEAM: 160+ participants from 60+ institutions worldwide, representing 9+ codes as of 2021

• DATA SHARING: Simulations outputs and analysis softwares will be shared with the community

• Flagship paper by J. Kim et al. (2014), 2nd paper by J. Kim et al. (2016), 3rd paper by S. Roca-Fabrega et al. (2021)

arXiv:2001.04354 (Jan 2020)

AGORA Paper III: Cosmo-Run

- 4 calibration steps
- only in the 4th step, we turn on our favorite SN feedback model.
- the only constraint: $M_{\star} \sim (1-5) \times 10^9 h^{-1} M_{\odot}$ targeting the abundance matching result at z=4.

Code	Stellar feedback	SN & metal production model	Effective metal yield	Runtim
Art-I	T+K, RP	SN Type Ia/II, AGB stars*	0.033	$E_{\rm thermal} = 2 \times 10^{51} {\rm ergs/SI}$
Enzo	Т	SN Type II	0.032	$E_{\rm thermal} = 2$
RAMSES	T, DC	SN Type II	0.033	$E_{\text{thermal}} = 4 \times 10^{51} \text{ergs/SN}, \text{c}$
CHANGA	T+S	SN Type Ia/II, AGB stars**	0.032	$E_{\rm thermal} = 2$
GADGET-3	T+K, RP, DC	SN Type Ia/II, AGB stars	0.025	$E_{\rm SN}=4 imes10^{49}{ m ergs}/{ m M}_\odot,$
GEAR	T, DC	SN Type Ia/II	0.024	$E_{\text{thermal}} = 4.5 \times 10^5$
Gizmo	T+K	SN Type II	0.033	$E_{\rm SN}=5$

ne parameters N, $p = 3.6 \times 10^6 \,\mathrm{M_{\odot} \, km \, s^{-1}}/\mathrm{SN}$ $5 \times 10^{52} \, \text{ergs/SN}$ $\sigma_{\rm min} = 100 \,\mathrm{km}\,\mathrm{s}^{-1}, \ T_{\rm delay} = 10 \,\mathrm{Myr}$ $5 \times 10^{51} \, \mathrm{ergs/SN}$ $T_{\text{delay}} = t_{\text{hot}}$ (see Section 3.2.5) ¹ ergs/SN, $T_{\text{delay}} = 5 \text{ Myr}$ $\times 10^{51} \, ergs/SN$

Roca-Fabrega+21

CosmoRun model *z*=8, 7, 6, 5, 4

The AGORA High-resolution Galaxy Simulations Comparison Project. V: Satellite Galaxy Populations In A Cosmological Zoom-in Simulation of A Milky Way-mass Halo

MINYONG JUNG ^(D), ¹ SANTI ROCA-FÀBREGA ^(D), ^{2, 3, *} JI-HOON KIM ^(D), ^{1, 4, *} ANNA GENINA, ^{5, *} LOIC HAUSAMMANN, ^{6, 7, *} HYEONYONG KIM (D,^{1,8,*} ALESSANDRO LUPI,^{9,10,*} KENTARO NAGAMINE (D,^{11,12,13,*} JOHNNY W. POWELL (D,^{14,*}) YVES REVAZ,^{7,*} IKKOH SHIMIZU,^{15,*} HÉCTOR VELÁZQUEZ,^{16,*} DANIEL CEVERINO,^{17,18} JOEL R. PRIMACK ^(D),¹⁹ THOMAS R. QUINN,²⁰ CLAYTON STRAWN ^(D),¹⁹ TOM ABEL ^(D),^{21, 22, 23} AVISHAI DEKEL,²⁴ BILI DONG,²⁵ BOON KIAT OH ^(D),^{26, 1} ROMAIN TEYSSIER,²⁷ AND THE AGORA COLLABORATION^{28, 29}

No more "Missing Satellites Problem"

No more "Missing Satellites Problem"

of satellite halo is less in hydro sims compared to DM-only sim. Reionization, UV background, ram-pressure/tidal stripping, SN feedback

Dark Matter Halo —> Galaxies

$n(M) \propto M^{-2}$

Sheth-Tormen '01)

m12q FIRE simulation

Movie

m_{dm}~2e5 Mo/h m_b=5e3 Mo/h

€_{dm}=100 pc/h €b=7 pc/h
Movies: zoom-in sim

Gas Density

AGORA L12 GADGET3-Osaka sim. Shimizu, KN+19

cf. Roca-Fabrega+21 https://sites.google.com/site/santacruzcomparisonproject/

log(Temperature)

log(Metallicity)

Stellar-to-Halo Mass Ratio (SHMR)

Naab & Ostriker '17

Different feedback models

Different CGM/IGM temperatures

Ni+ '21

AGN feedback models

Two-mode AGN feedback model

Eddington-limited accretion: $\dot{M} = \min(\dot{M}_{Bondi}, \dot{M}_{Edd})$,

$$\dot{M}_{\text{Bondi}} = \frac{4\pi G^2 M_{\text{BH}}^2 \rho}{c_s^3}, \qquad \dot{M}_{\text{Edd}} = \frac{4\pi G M_{\text{BH}} m_p}{\varepsilon_r \sigma_{\text{T}}} c,$$

IllustrisTNG **AREPO**

 $\sum \frac{\dot{E}_{\text{therm}}}{\dot{E}_{\text{therm}}} = 0.02 \dot{M} c^2$, thermal (quasar) mode

$$\dot{\mathcal{E}}_{kin} = \mathcal{E}_{f,kin} \dot{M} c^2$$
, kinetic (jet) mode (mainten-
mode)
 $0^9 \quad \mathcal{E}_{f,kin} = \min\left(\frac{\rho}{0.05\rho_{SFthresh}}, 0.2\right)$, weaker coupling in
low-p environmen

 10^{8}

Weinberger+'18

 10^{7}

Angular Momentum / Torque model

EAGLE (GADGET-3)

 $\dot{M}_{\rm BH} = \min(\dot{M}_{\rm Bondi} \times \min\left((c_{\rm s}/V_{\Phi})^3/C_{\rm visc}, 1\right), \dot{M}_{\rm Edd}),$

 V_{Φ} : average circular speed of gas around BH

 C_{visc} : free param for viscosity of subgrid accretion disk

 $\epsilon_r \epsilon_f = 0.1 \times 0.15 = 0.015.$

SIMBA (Gizmo)

$$\dot{M}_{\rm BH} = \left(1 - \epsilon_{\rm r}\right) \left[\min(\dot{M}_{\rm Bondi}, \dot{M}_{\rm Edd}) + \min(\dot{M}_{\rm Torque}, 3 \, \dot{M}_{\rm Edd})\right],$$
$$\dot{M}_{\rm Torque} = \epsilon_{\rm T} \, f_{\rm d}^{5/2} \times \left(\frac{M_{\rm BH}}{10^8 \, {\rm M}_{\odot}}\right)^{1/6} \times \left(\frac{M_{\rm enc}(R_0)}{10^9 \, {\rm M}_{\odot}}\right) \times \left(\frac{R_0}{100 \, {\rm pc}}\right)^{-3/2} \times \left(1 + \frac{f_0}{f_{\rm gas}}\right)^{-1} \, {\rm M}_{\odot}/{\rm yr},$$

- **Rosas-Guevara+15,16**

- **Stochastic thermal heating only when sufficient to raise to** $\Delta T = 10^{8.5} K$

gas inflow rate driven by grav. instabilities from galactic to the accretion disk scale, within $R_0 = 2 h^{-1} kpc$ (Hopkins & Quataert '10; Angl'es-Alc'azar+ '15,'17).

Habouzit+21

 $\log_{10} M_* [M_{\odot}]$

Dark matter particle candidates

Thermal relic WIMP $(10 \text{GeV} \sim 1 \text{TeV})$

(cf. self-interacting DM)

becomes non-relativistic earlier than CDM; suppress perturbation at galactic or smaller scales

(gravitino, sterile neutrino,...)

remains relativistic until late time, and erase structures at super-galactic scales.

(Fuzzy DM; axion-like, ALP, ULA)

WDM reduces substructure, but keeps the cusp. —

SIDM doesn't reduce substructure, but produces a large core

Spergel & Steinhart '00 Rocha+'13

Recent JWST discoveries & their implications

Dec 2021

Redshift Frontier

James Webb Space Telescope (JWST)

- Covering up to IR (0.6 -28.5 micron)
- Segmented mirror (6.5m) @L2 point (cf. Hubble 2.4m)
- ~10B USD project (~1.5兆円)

Launched on Dec 25, 2021; First image released on July 12, 2022

primary mirror (diameter 6.5m)

- Sun Shield
 - keep the telescope at -233°c

 $+ - \pitchfork \boxtimes$

ジェームズ・ウェッブ宇宙望遠鏡 (JWST)

JAMES WEBB SPACE TELESCOPE

MIRROR SIZE

Webb's large, segmented primary mirror gives it unprecedented light-gathering ability.

6-FT PERSON 1.8 meters

HUBBLE MIRROR 2.4 m, 4.5 m²

600-28,500 nm

MID-INFRARED

FAR-INFRARED

JWST MIRROR

6.5 m, 25 m²

Galaxy Cluster SMACS 0723

First publicly released JWST image July 11, 2022

4.6 billion yrs from Earth

z~0.4

HST

Galaxy Cluster SMACS 0723

JWST

9 Gyrs ago...

Firefly Sparkle

F200W+F277W

Firefly_BF

F115W+F150W

Firefly_NBF

Grav. lensed gal in **MACS J1423:**

 $z_{\rm spec} \sim 8.3$

• [Oiii] detection

• 10 star clusters

• $M_{\star} \sim 10^5 - 10^6 M_{\odot}$

- nebular dominated spectra **—> high** $T_e \sim 4 \times 10^4 K$
 - top-heavy IMF

Mowla+'24

Cosmic Star Formation Rate

Harikane+23

More high-z galaxies

Harikane+'23

Larger number of z>12 gals than in simulations?

Harikane+'23

Anomalous abundance ratios – top-heavy IMF?

Cameron+'23a

High nebular continuum — top heavy IMF?

Cameron+'23b

Primordial He abundance from local EMPGs

Matsumoto+'23

DRAFT VERSION DECEMBER 29, 2023 Typeset using IAT_EX **twocolumn** style in AASTeX631

Probing Chemical Enrichment in Extremely Metal-Poor Galaxies and First Galaxies

Keita Fukushima,¹ Kentaro Nagamine,^{1,2,3} Akinori Matsumoto,^{4,5} Yuki Isobe,^{4,5} Masami Ouchi,^{6,4,7} TAKAYUKI R. SAITOH,⁸ AND YUTAKA HIRAI^{9,10}

z~10 simulated galaxy

- -2.0
- -1.5 -1.6
- -1.7
- -1.8
- -1.9

Lya forest & IGM tomography

CROCODILE simulation

Dr. Wani @Osaka U.

z = 0.53t = 8.38 Gyr

10 Mpc

Understanding the matter distribution: DM, gas, stars HI, metals, dust, ...

> 25 & 50 Mpc/h Star formation SN & AGN fb UVB

Oku & KN '24 arXiv:2401.06324

Quasar absorption line and Ly-a forest

obs: Weymann+81; Cowie+95; Rauch+98

theory: Cen+94; Hernquist+96; Miralda-Escude+96; Croft+98; Zhang+97, 98

Quasar absorption line and Ly-d forest

Ly-a forest demonstration movie

Quasar

(very bright SMBH)

IGN tomography

TMT JP Science Book 2020

Lee+'14

Tomographic Reconstruction of 3D Lya forest absorption

24 star-forming gals (SFGs) @ z~ 2.3 - 2.8

Sum Re/PFS

(Subaru Measurement of Images and Redshift)

- a 5+5 year survey program
- exploiting FOV ~1.5° of 8.2m Subaru
- Imaging with Hyper-SuprimeCam (HSC)
 - 870M pixels
 - ~20M galaxy images, 1400 sq. deg.
 - 2014–2019, 300 nights
- spectroscopy with PrimeFocusSpectrograph (PFS) ≠ PSF
 - 2400 optical fibers
 - ~4M redshifts
 - 300+ nights 2024~
- like SDSS on 8.2m telescope!

P: Murayama)

Green+21, the PFS Galaxy Evolution public doc (arXiv:2206.14908)

Subaru

HSC

PFS

Many other surveys:

cf. DESI, Euclid, MOONS, WEAVE-QSO, **J-PAS**, ...

Using the light cone to study feedback effects

GADGET3-Osaka cosmological simulation: L_{box} = 100 Mpc/h, N= 2 x 512³

w/ various models

1. No-feedback 2. Const. wind velocity (Springel & Hernquist '03)

3. Osaka feedback model (Shimizu+'19) **4. FG09 vs. HM12 UVB**, 5. Self-shielding or not.

Light-cone @ z~2-3,

 $100 h^{-1}$ cMpc (height) × $1 h^{-1}$ cGpc × $10 h^{-1}$ cMpc (depth)

(but no AGN FB yet)

Various statistics can be computed from this: 1. Flux PDF, 2. 1D $P_k(v)$, 3. Flux contrast (1D, 2D)

Flux PDF

Lya forest statistics

1D Ly-a P(k)

Lya forest mean flux contrast vs. Impact param.

Impact Parameter from galaxies

Lya forest via HydroBAM — hierarchical bias mapping

Models the Lya forest with accurate summary statistics up to 3-pt

Hierarchical approach

 $\delta_{\text{HII}}(\mathbf{r})^{4} = P(\delta_{\text{HII}}(\mathbf{r}) \mid \Theta\{\delta_{\text{dm}}(\mathbf{r}) \otimes \mathcal{K}, \text{ n.l. terms}\})$

 $\delta_{\mathrm{HI}}(\mathbf{r})^{4} = P(\delta_{\mathrm{HI}}(\mathbf{r}) | \Theta\{\delta_{\mathrm{HII}}(\mathbf{r}) \otimes \mathcal{K}, \mathrm{n.l. terms}\})$

 $F(\mathbf{r}) \stackrel{\checkmark}{\to} \mathbf{\mathcal{B}} = P(F(\mathbf{r}) \mid \Theta\{\delta_{\mathrm{HII}}(\mathbf{r}) \otimes \mathbf{\mathcal{K}}, \delta_{\mathrm{HI}}(\mathbf{r})\})$

Training data: GADGET3-Osaka hydro sim. w. SF & Feedback in (100 Mpc h⁻¹)³

Complexity of Cosmological Baryon Phase Diagrams

Joint Prob. Distribution $\mathcal{P}(\eta, \{\Theta\})_{i}$ $\eta = \rho_{\text{gas}}, \, \rho_{\text{HI}}, \, T$ **Measure the bias:** $\mathcal{P}(\eta | \{\Theta\})$ Compute $P_{\eta}(k)$ & compare with the reference sim.

Sinigaglia+'21

Bias Assignment Method (BAM)

First, characterize the DM distribution:

(i) Local property: $\delta_{\rm DM}$

(ii) Non-local property: e.g., cosmic web classification via eigen values of tidal field tensor (long range)

T-web
$$\mathcal{T}_{ij} \equiv \partial_i \partial_j \phi$$

cf. Hahn+'07, Ferero-Romero+09, Zhao+15, Libeskind+18

Balaguera-Antolinez+'18,'19 Kitaura+'22 Sinigaglia+'21, '22

In summary,

1. Local δ : $\{\Theta\} = \{f(\delta)\}$ 2. T-web : $\{\Theta\} = \{f(\delta), \text{ knots, filaments, sheets, voids}\}$ 3. I^{ϕ} -web : { Θ } = { $f(\delta), g(I_2^{\phi}), g(I_3^{\phi})$ } 4. I^{δ}-web : { Θ } = { $f(\delta), g(I_1^{\delta}), g(I_2^{\delta})$ },

> $f(x) = \log(2 + x)$ $g(x) = \frac{2(x^{\alpha} - \gamma)}{(\eta - \gamma) - 1}$ $\gamma \equiv \min(x^{\alpha}), \ \eta \equiv \max(x^{\alpha})$

> > mapping large range of *I* into [-1, 1]

Mpc]

P(k) as a cost function

Results: 2D maps & one-point PDF

cf. Harrington+21; Horowitz+'21

Sinigaglia+'22

Results: power spectrum

Deviation from reference

BAM: < 2% up to $k \sim 2.0 h \text{ Mpc}^{-1}$ in real space < 2% up to $k \sim 1.0 h$ Mpc⁻¹ in redshift space **FGPA:** ~5% up to $k \sim 1.0 h \text{ Mpc}^{-1}$ in real space

Sinigaglia+'22

XRISM, Athena, FORCE, SuperDIOS

End.