

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

鉱物試料に形成された粒子飛跡と地球年代 スケールでの宇宙線研究

Study for Cosmic-ray with Geological Time scale by the Ancient Mineral as the Paleo Detector

> Tatsuhiro NAKA Toho University (KMI, Nagoya University)

2024.2.29-3.1 超新星ニュートリノ研究会@岡山大学

地質学試料に残った宇宙線の痕跡

アイスコア

小惑星・月面サンプル

成分分析•放射化学分析 放射線計測による分析 (エネルギー)

鉱物 (Ancient Minerals)

Geologic time scale > O(100) M year

この中に宇宙線の情報が記録されているのであれば、数億年スケールの観測を行った検出器となる

■Galactic CC SN neutrino

Dark Matter

- WIMP

- composite DM (Ultra-heavy DM)

■Ultra-heavy cosmic-ray

Mineral as tracking detector

Fission tracks in the Zircon

Fission track density = $\lambda \times n$ (density of U) $\times T$ (date)

e.g., In case of 1 ppm U contamination and 1 G year Fission track density ~ 10⁸ S.F. /g

Detection model

	Materialq	$R(\pm 50\%)^{a}$	$R_{ m h}(\pm 50\%)^{ m a}$	$E(10^{11} \text{ cgs})$	Knoop hardness (10 ¹⁰ cgs)	Dielectric constant	Specific gravity	Composition
	Olivine	2.6	1.7	10.3°	7.0 ⁱ	ن20	3.32 ⁱ	MgFeSiO ₄
	Hypersthene		1.2	• • •	3.9 ⁱ	32 ^j	3.45 ⁱ	$Mg_{1.5}Fe_{0.5}Si_2O_6$
	Laboradorite	1.9	1.2	$6.7 - 8.3^{c,d}$	5.0 ⁱ	20 ^j	2.71 ⁱ	$Na_2Ca_3Al_8Si_{12}O_{40}$
	Zircon	• • •	1.3	• • •	10.0 ⁱ	12 ^{1,h}	4.68 ⁱ	ZrSiO ₄
	Phosphate glass		0.4	• • •	2.8 ^j	14 ^j	3.1 ^j	$63P_2O_5:11UO_2:8Al_2O_3:9Ag_2O:9K_2O$
_	Soda lime glass	1.0	0.4	7.0–7.8 ^{e,c}	3.2e	9i	2.49 ^e	$67 SiO_2: 14 Na_2O: 14 CaO: 5 Al_2O_3$
ai	Tektite glass	0.7	0.3	7.0 ^{e,c}	3.4 ⁱ	6.4^{m}	2.43 ^p	$74SiO_2$: $12Al_2O_3$: $4FeO$ + others ^p
	Orthoclase	• • •	0.4	• • •	5.0 ⁱ	4.8 ^j	2.57 ⁱ	KAlSi ₃ O ₈
	Quartz	0.5	0.5	7.9–10.2°	8.0^{i}	4.7°	2.65 ⁱ	SiO_2
	Phlogopite mica	• • •	0.06	•••	0.90 ⁱ	5-7 ^{c.n}	2.86 ⁱ	$\mathrm{KMg}_{2}\mathrm{Al}_{2}\mathrm{Si}_{3}\mathrm{O}_{10}(\mathrm{OH})_{2}$
	Muscovite mica		0.03	···	0. <u>45</u> i	<u>5.7–8.7^{e,n}</u>	2 <u>.93</u> i	$KAl_3Si_3O_{10}(OH)_2$
	Polyethylene terepl thalate (Mylar) Bisphenol-A poly-	h- 0.02		0.45		3-6 ^f	1.35 ^f	C ₁₉ H ₁₆ O ₇
	carbonate (Lexa	n) 0.007	0.008	0.22	0.25 ^k	3.1 ^g	1.20s	$C_{16}H_{14}O_{3}$
er	HBpaIT polyester Cellulose acetate	0.013 ^ь	0.014 ^b	• • •	• • •	40	1.4º	$C_{17}H_9O_2$
	butyrate	0.009	0.009	$0.04-0.24^{f,h}$	0.20 ^k	$3.2-6.4^{h}$	1.22 ^f	$C_{20}H_{32}O_5$
	Cellulose nitrate	0.02	0.02	$0.1-0.3^{f,h}$	0.25 ^k	6-8 ^{f,h}	1.33r	$C_6H_8O_9N_2$

TABLE III. The ratio of the mechanical stress to the electrostatic stress in various materials.

^a Unit charge assumed on adjacent ions.

R.L. Fleischer et al., J. Appl. Phys. 36, 3645 (1965)

Phase contrast optical microscope image of Fe ion beam (500 MeV/u) [HF 20°C, 80 min etching]

 α -recoil track due to ²³⁸U

Mineral Detection of Neutrinos and Dark Matter. A Whitepaper

Sebastian Baum,¹ Patrick Stengel;² Natsue Abe,³ Javier F. Acevedo,⁴ Gabriela R. Araujo,^{5,a} Yoshihiro Asahara,⁶ Frank Avignone,⁷ Levente Balogh,⁸ Laura Baudis,⁵ Yilda Boukhtouchen,⁹ Joseph Bramante,^{9,10} Pieter Alexander Breur,⁴ Lorenzo Caccianiga,¹¹ Francesco Capozzi,¹² Juan I. Collar,¹³ Reza Ebadi,^{14,15} Thomas Edwards,¹⁶ Klaus Eitel,¹⁷ Alexey Elykov,¹⁷ Rodney C. Ewing,¹⁸ Katherine Freese,^{19,20} Audrey Fung,⁹ Claudio Galelli,²¹ Ulrich A. Glasmacher,²² Arianna Gleason,⁴ Noriko Hasebe,²³ Shigenobu Hirose,²⁴ Shunsaku Horiuchi,^{25,26} Yasushi Hoshino,²⁷ Patrick Huber,^{25,a} Yuki Ido,²⁸ Yohei Igami,²⁹ Norito Ishikawa,³⁰ Yoshitaka Itow,³¹ Takashi Kamiyama,³² Takenori Kato,³¹ Bradley J. Kavanagh,³³ Yoji Kawamura,²⁴ Shingo Kazama,³⁴ Christopher J. Kenney,⁴ Ben Kilminster,⁵ Yui Kouketsu,⁶ Yukiko Kozaka,³⁵ Noah A. Kurinsky,^{4,36} Matthew Leybourne,⁹ Thalles Lucas,⁹ William F. McDonough,^{37,38,39} Mason C. Marshall,^{15,40} Jose Maria Mateos,⁴¹ Anubhav Mathur,¹⁶ Katsuyoshi Michibayashi,⁶ Sharlotte Mkhonto,⁹ Kohta Murase,^{42,43,44} Tatsuhiro Naka,²⁸ Kenji Oguni,²⁴ Surjeet Rajendran,¹⁶ Hitoshi Sakane,⁴⁵ Paola Sala,¹¹ Kate Scholberg,⁴⁶ Ingrida Semenec,⁹ Takuya Shiraishi,²⁸ Joshua Spitz,⁴⁷ Kai Sun,⁴⁸ Katsuhiko Suzuki,⁴⁹ Erwin H. Tanin,¹⁶ Aaron Vincent,⁹ Nikita Vladimirov,⁵⁰ Ronald L. Walsworth,^{14,15,40} and Hiroko Watanabe³⁷

² Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, via Giuseppe Saragat 1, I-44122 Ferrara, Italy

³Mantle Drilling Promotion Office, Japan Agency for Marine-Earth Science and Technology (JAM-

Phys.Dark Univ. 41 (2023) 101245

¹Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA

Mineral Detection of Neutrinos and Dark Matter

Jan 8 – 11, 2024 US/Eastern timezone

Enter your search term

Q

Timetable Overview Call for Abstracts Mon 08/01 Tue 09/01 Wed 10/01 Thu 11/01 All days Timetable 🕂 Print PDF Full screen Detailed view Filter Contribution List 10:00 My Conference Welcome Sebastian Baum et al. 10:05 - 10:15 My Contributions Patrick Stengel 🥝 Mineral Detectors for Dark Matter - overview Book of Abstracts Registration Participant List 11:00 Coff Pale 2023, 2024と2度開催 12:00 Lune

2025年は日本開催 @海洋研究開発機構 (JAMSTEC)

For Neutrino Detection

Neutrino coherent scattering

Neutrino coherent scattering is predicted in the standard model.

$$\frac{d\sigma}{dE_r} = \frac{G_F^2}{4\pi^2} (N - (1 - 4\sin^2\theta_W)Z)^2 m_N (1 - \frac{m_N E_r}{2E_v^2})\pi r^2 F^2(E_r)$$

Α

В

counts / 2 PE

Res.

Res. counts / 500 ns

Neutrino Flux from Galactic Core Collapse(CC) Super Novae

Galactic Core Collapse Super Novae rate : 2.3 \times 10⁻² yr⁻¹

S. Baum *et al.,* Phys. Rev. D. 101, 103017(2020)

- Diffused SN Background(DSNB)
 → flux input from J.F. Beacom (2010)
- Galactic CC SN

$$\left(\frac{\mathrm{d}\phi}{\mathrm{d}E_{\nu}}\right)^{\mathrm{gal}} = \dot{N}_{\mathrm{CC}}^{\mathrm{gal}} \frac{\mathrm{d}n}{\mathrm{d}E_{\nu}} \int_{0}^{\infty} \mathrm{d}R_{E} \frac{f(R_{E})}{4\pi R_{E}^{2}},$$

TABLE I. Parameters of the neutrino spectra, Eq. (1), for electron neutrinos, antielectron neutrinos, and $\nu_x \equiv \{\nu_{\mu}, \nu_{\bar{\mu}}, \nu_{\tau}, \nu_{\bar{\tau}}\}$ used in our numerical calculations [75].

ν	$E_{\nu}^{\rm tot}$ (erg)	$\langle E_{\nu} \rangle$ (MeV)	α	
ν_e	6×10^{52}	13.3	3.0	
$\nu_{\bar{e}}$	$4.3 imes 10^{52}$	14.6	3.3	
ν_x	2×10^{52}	15	3	

Galactic CC SN rate in the mineral

Episomite[Mg(SO₄) \cdot 7(H₂O)]

Halite[NaCl]

Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2 \cdot H_2O]$

Olivine $[Mg_{1.6}Fe^{2+}_{0.4}SiO_{4}]^{-17}$

For Dark Matter Detection

Dark Matter mass scale

Number of signal $N = R [/kg/year] \times M [kg] \times T [year]$

DM-nuclei cross section Event rate : $R[/kg/year] = \rho[target nuclei/kg] \times flux[/cm^2/sec] \times \sigma[cm^2] \times (3.2 \times 10^7 sec/year)$ (unknown parameter) ρ : local dark matter density 0.4 GeV/cm³ from rotation cureve of galaxy $flux = \frac{\rho \left[GeV/cm^{3} \right]}{M_{DM} \left[GeV/c^{2} \right]} \times v \left[cm/sec \right]$

v: dark matter velocity (typically 300 km/sec)

Final sensitivity depends on the detection performance such as energy threshold, readout efficiency, background etc..

昔の太陽系は、もっと内側にあった可能性もある (MNRAS 526, 6088-6102 (2023))

1 cycle ~ 250 Myear

Muscovite Mica (白雲母)

Franceschi+ 2023

Formula	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂
Cleavage	Perfect on {001}
Geological Setting	Common in many different rock types as a primary mineral

- Lower tracking threshold for energy deposition
- Low Uranium contamination (~ ppb)
- Thin layer and transparent

Previous research for WIMP search

VOLUME 74, NUMBER 21

PHYSICAL REVIEW LETTERS

22 May 1995

Limits on Dark Matter Using Ancient Mica

D. P. Snowden-Ifft,* E. S. Freeman, and P. B. Price* *Physics Department, University of California at Berkeley, Berkeley, California 94720* (Received 20 September 1994)

The combination of the track etching method and atomic force microscopy allows us to search for weakly interacting massive particles (WIMPs) in our Galaxy. A survey of 80720 μ m² of 0.5 Gyr old muscovite mica found no evidence of WIMP-recoil tracks. This enables us to set limits on WIMPs which are about an order of magnitude weaker than the best spin-dependent WIMP limits. Unlike other detectors, however, the mica method is, at present, not background limited. We argue that a background may not appear until we have pushed our current limits down by several orders of magnitude.

α-recoil tracks

28nm nm

DMICA project

JAMSTEC 廣瀬さん +

profiler

Larger stopping power results in higher pit formation efficiency

arXiv:2301.07118

S. Hirose, slide of MDvDM'23

Sensitivity Curve derived for DMICA's target exposure of 1 ton year case

 High-mass end of the curve of DMICA could be significantly larger than that of the XENON1T experiment.

S. Hirose, slide of MDvDM'23

天の川一周分以上の情報の蓄積データの解析のため、質的に異なる検証

Dark Matter mass scale

Candidate : Q-ball, quark nugget, Nuclearite, etc. Mass scale : > 10²⁰ GeV

DM flux on the earth =
$$1.2 \times 10^7 / cm^2 / sec \left(\frac{v}{300 \text{ km/sec}}\right) \left(\frac{1 \text{ GeV/c}}{M_{DM}}\right)$$

Heavy DM expect to be very low flux

Dark Matter in the milky way galaxy

Dark matter flux on the earth 1.E+14 1.E+11 Maximum dark matter flux 1.E+08 1.E+05 1.E+02 1.E-01 1.E-04 rotol $\overline{\mathbf{O}}$ 1.E-07 Ē 1.E-10 Monopole, Q-ball, PBH 1.E-13 1.E+15 1.E+18 1.E+21 1.E+24 1.E+27 1.E+031.E+09

Dark matter mass [eV/c²]

Flux of 10²⁰ GeV/c² : < 10⁻¹³ /cm²/sec

For typical detector scale, O(1)/year or less

Paleo detector with geoscience scale is powerful methodology!

Monopole

Monopole Flux — Cosmic Ray Searches

PDG

"Caty" in the charge column indicates a search for monopole-catalyzed nucleon decay.

FLUX	MASS	CHG	COMMENTS				
<u>(cm⁻²sr⁻¹s⁻</u>	¹)(GeV)	(g)	$(\beta = v/c)$	EVTS	DOCUMENT ID		TECN
< 1.5E - 18		1	$\beta > 0.6$	0	¹ ALBERT	17	ANTR
<2.5E-21		1	$1E8 < \gamma < 1E13$	0	² AAB	16	AUGE
<1.55E-18			$\beta > 0.51$	0	³ AARTSEN	16B	ICCB
<1E-17		Caty	$1E-3 < \beta < 1E-2$	0	⁴ AARTSEN	14	ICCB
<3E-18		1	$\beta > 0.8$	0	⁵ ABBASI	13	ICCB
<1.3E-17		1	$\beta > 0.625$	0	⁶ ADRIAN-MAR.	.12A	ANTR
<6E-28	<1E17	Caty	$1E-5 < \beta < 0.04$	0	⁷ UENO	12	SKAM
<1E-19		1	$\gamma > 1E10$	0	⁸ DETRIXHE	11	ANIT
<3.8E-17		1	$\beta > 0.76$	0	⁵ ABBASI	10A	ICCB
< 1.3E - 15	1E4 <m<5e< td=""><td>13 1</td><td>$\beta > 0.05$</td><td>0</td><td>⁹ BALESTRA</td><td>80</td><td>PLAS</td></m<5e<>	13 1	$\beta > 0.05$	0	⁹ BALESTRA	80	PLAS
<2.E-13			$4.E - 4 < \beta < 1$	0	TSUKAMOTO	87	CNTR
<5.E-14		1	all β	1	¹⁹ CAPLIN	86	INDU
<5.E-12		1		0	CROMAR	86	INDU
< 1.E - 13		1	$7.E-4 < \beta$	0	HARA	86	CNTR
<7.E-11		1	all <i>B</i>	0	INCANDELA	86	INDU
< 1.E - 18			$4.E-4 < \beta < 1.E-$	-30	¹⁸ PRICE	86	MICA
<5.E-12		1		0	BERMON	85	INDU
<6.E-12		1		0	CAPLIN	85	INDU
<6.E-10		1		0	EBISU	85	INDU
					1.		

Mica was utilized for monopole search assumed M-Al bound condition

Q-ball

- Baryon or/and Lepton number generation
- Beyond Standard Model (e.g., SUSY) ⇒ Grand Unified Theory
- Dark Matter Candidate

Q-ball solution and Affleck-Dine(A-D) mechanism

Q-ball solution (Coleman, 1985)

Scalar field ϕ with U(1) symmetry

$$Q = \frac{1}{2i} \int d^3 x (\phi^* \dot{\phi} - \phi^* \dot{\phi})$$

$$E = \int d^3 x (|\dot{\phi}|^2 + \frac{1}{2} |\nabla \phi|^2 + V(\phi))$$

Q-ball = field configuration minimizing E with Q constant

A-D mechanism

- MSSM scalar field
- SUSY breaking and inflation

Motion in phase direction due td θ -dependence lmφ $\mathbb{N}_{B,L} \sim \theta \phi^2$ AD field oscillation has instability if V(ϕ) < ϕ^2

- 空間的なスカラー場のゆらぎ
- Q-ballの生成

Generation of B and L number 初期宇宙におけるBaryon数(Lepton数)生成機構

Q-ball dark matter

Gage mediated SUSY breaking model

$$V(\Phi) = M_F^4 [\log(1 + \frac{|\Phi|^2}{M_{mess}^2}]^2 + m_{3/2}^2 |\Phi|^2 [1 + K \log\left(\frac{|\Phi|^2}{M_{mess}^2}\right)]$$

Gage-mediation type
Q-ball is always formed

$$\frac{dM_Q}{dQ} = \sqrt{2}\pi\zeta M_F Q^{-1/4} < m_p$$

$$\frac{dM_Q}{dQ} = m_{3/2} < m_p$$

$$M_Q = m_{3/2} Q$$

 $* m_{3/2}$: gravitino masss

Q-ball can be the Dark Matter because there is no lighter particle with baryon number than proton.

AD field oscillation has instability if V(ϕ) < ϕ^2

Stable "charged" Q-ball

- Q-ball with both B and L charge (e.g., u^cu^cd^ce^c)
- Stable against decay into protons
- Lepton component can decay into leptons

J.P. Hong, M. Kawasaki, M. Yamada, PRD, 92, 063521 (2015)

J.P. Hong, M. Kawasaki , PRD, 95, 123532 (2017)

Stable charged Q-ball condition

- Size of the electron cloud becomes smaller than the Q-ball radius
- Bohr radius is smaller than the Q-ball radius when the cloud starts to from
- Schwinger effect become effective

Condition of "charged" Q-ball dark matter

Evolution of charged Q-ball e $T \sim 8.6 \text{MeV}$ Q_{1S} Much heavy mass : ~ 10^{20} GeV $Q_{e} = \alpha^{-1} \sim 137$ BBN $T \sim 1 \text{MeV}$ +O(1) ionlike $_1Q_{1S}$ $T \sim 8.6 \text{keV}$ β:10⁻³ $Q_{neutral}$ or O^{-1} -He Q-ball atom $Q^{O(1)}$ $p - e^{-}$ recombination ization from keV to $T\sim 10^{-1}{\rm eV}$ eV scale following the Saha fomula

Jeong-Pyong Hong et al JCAP08(2016)053

★ time

As quite heavy atom-like particle, it should not be stopped in the material.

Demonstration →penetrating long track

No candidate for any radiation on the earth ⇒ <u>Background free !</u>

Xe 500 MeV/u@ HIMAC

Expected achievement for Q-ball search with the mica + current cutting-edge technologies

Optical microscope scanning system

PTS system for nuclear emulsion scanning (NEWSdm experiment for directional DM search)

Application of optical readout system for nuclear emulsion

Current system : ~20h /100 cm² (optimized for nano-metric tracking with nuclear emulsion)

Optimization : 1h /100 cm² (for Paleo detector)

Wide view scanning : 10 min /100 cm² (only surface)

Now on construction !

New scanning system for the Paleo detector

Construction of automatic optical scanning system

- Driving stage installation was done
- Piezo actuator for Z driving and high speed camera will be installed soon.
- Scanning program will be diverted from nuclear emulsion scanning

Image Processing study

- > Optimal image processing is investigating
- Deep learning will be installed for more efficient event selection

First operation and search of the Q-ball-like tracks will be started in this year.

Expectation for searching the astroparticle physics parameter space

For Cosmic-ray (especially, Ultra-heavy ion)

歴史: Apollo sample

1960年代から80年代くらい に積極的に研究

「粒子トラックとその応用」(阪上正信 著)より

図 95 月試料のトラック (a) 試料 10005; 小ガラス球中の破砕反跳ト ラック (b) 試料 10017; 小さな輝石粒中の 宇宙線トラック (ある方向 で長い), 多くの浅い短いトラックは破砕反跳による [R. L. Fleischer et al.: Geochim. Cosmochim. Acta Suppl. 1 3, 2103 (1970)]

Long and High-Z track candidate in the mineral on the moon

Apolo12 サンプル ピジョン輝石 [(Mg,Fe,Ca)₂Si₂O₆]

<u>少なくとも1mm程度のトラックを1 event 観測</u>

The https://www.mindat.org/min-3210.html crystals from lunar rock

OLIMPIYA experiment @Russia

ApJ, 829:120 (2016)

<u>パラサイト隕石</u> 鉄とカンラン石でできた隕石

カンラン石を取り出し、エッチン グ処理によってトラック分析

Olivine $[Mg_{1.6}Fe^{2+}_{0.4}SiO_4]$

飛跡ごとのエッチングの進み具合(エッチング速度)からzを同定することができる

Nuclear charge spectrum from track analysis

 Table 2

 Registered Events of Heavy and Superheavy Nuclei in Various Experiments

	Z Interval	Ariel 6 (1)	HEAO- 3 (2)	UHCRE (3)	OLYMPIYA
1	$Z \ge 50$	412	362	_	10283
2	$50 \leqslant Z \leqslant 58$	240	204		5612
3	$60 \leq Z \leq 68$	84	34	_	2814
4	$Z \ge 70$	88	62	2567	1233
5	$70 \leqslant Z \leqslant 73$	29	10		715
6	$74 \leqslant Z \leqslant 80$	29	42		449
7	$81 \leqslant Z \leqslant 86$	27	10	_	59
8	$88 \leqslant Z \leqslant 103$	3	0	35	9
9	$Z \ge 92$	2	0		46 4

安定同位体が存在しない元素には元素記号の右肩に*を付す。

天然で特定の同位体組成を示さない元素については、最もよく知られた質量数を括弧内に示す。

Nuclear charge spectrum from track analysis

UHCRW (ApJ, 747:40, 2012)

Detector : LDEFに搭載したsolid track detector (polycarbonate)

Exposure : 170 m²sryear (5.8 year)

Ariel 6 (ApJ, 314-739-746, 1987)

Detector : Spherical gas scintillator + Cherenkov detector

Exposure : 1.7 m²sryear

HEAO-3 (ApJ, 346: 997-1009, 1989)

Detector : Ionization chamber + cherenkov detector Exposure : 6 m²sryear

OLIMPIYA case

Analyzed area : (probably) > 10 mm² Exposure time : Gyear scale

宇宙史の記録を保持。本質的に異なるデータ

> 10⁴ m²sryear

♦ : UHCRW (Donnelly *et al.,* 2012)

Detectable Energy for Olivine

Mean free path in the space $: 1/(~10^{-24} \text{ cm}^2 \times 6.5 \times 10^{-3} \text{ atom/cm}^3)$ Hot ionized gas density

 $= ~10^{28} \text{ cm} ~ 100 \text{ MPc}$

連星中性子合体: 銀河系内で100万年に10-20回程度(?) 超新星:銀河内で100年に1-2回(?)

Incident ion energy is expected to have **O(10-100) MeV/u** for heavy nuclei such as U, Pb••.

▶ 超重元素生成+加速メカニズムにお
ける重要な情報

月面探査プロジェクト

月面の鉱物・レゴリス

輝石(Pyroxene, (Mg,Fe,Ca)₂Si₂O₆)

かんらん石(Olivine, Mg₂SO₄)

斜長石(Plagioclase, NaAlSi3O8)

イルメナイト(Ilmenite, FeTiO₃)

インパクトガラス

「かぐや」スペクトルデータより https://www.isas.jaxa.jp/home/researchportal/gateway/2023/0608/

人エガラス

硬度の面から、インパクトガラスと同等 と考えてよい

Xe ion [38 GeV (275 MeV/u)] @ HIMAC, QST (量子科学技術研究開発機構)

原子力研究開発機構・タンデム加速器

lon 核種:⁶⁺Fe エネルギー:70 MeV

飛跡形成閾値 > 30-35 MeV/mg/cm²であることを確認

Conclusion

Paleo Detector with ancient mineral

Direct detection of Cosmic ray for Geological time scale

✓ Neutrino

→ 過去の超新星ニュートリノの情報:コヒーレント散乱による原子核反跳

✓ Dark Matter

- → WIMP探索:原子核反跳の深さ分布によるイベント識別
- → 超重暗黒物質(e.g., Q-ball, quark nugget, monopole)

·小惑星·隕石試料

白雲母中のlong track +光学顕微鏡システムによる探索感度の劇的向上

すでに興味深いトラックを検出 記録媒体を探る ⇒ 要検証+さらなる感疹向イア必須媒体を探る

✓ Cosmic ray

and a star

→ 超重元素(e.g., 超ウラン元素)の生成と加速 <u>
数億年以上に渡る宇宙</u> <u>
すでに興味深いトラックを検出ますないはまたせの</u>