Search for extra-galactic supernova neutrinos in Super-kamiokande スーパーカミオカンデにおける天の川銀河系外 超新星由来のニュートリノイベント探索

第10回超新星ニュートリノ研究会 2024年2月29日@岡山大学

岡山大学 中西史美

- Supernova rate nearby galaxy
- SN2023ixf
- Analysis method
- Cluster search
- Result
- Detection probability in SK
- Summary

Content

Supernova rate nearby Galaxy

Frequent phenomena in the universe

Focus on "mini-burst"

Rate $\sim 10^8$ /year

Observable SN neutrinos in SK

- The CCSN rate is estimated in the Mpc region 0.4 - 1.0/year at 6 Mpc
- Expected supernova neutrino in Full volume (32.5 kton) $\mathcal{O}(10^{-2})$ events at 6 Mpc

- Observed many optical scopes on May 19, 2023 https://www.wis-tns.org/object/2023ixf
- Typical Type II SN
- Distance: ~6.4 Mpc
- We guess the time of the burst started on May 19.

SK was running normally from 17 May

SN2023ixf

https://telescope.live/gallery/supernova-sn-2023-ixf-m101

@ZTG 5/19 7:47 (UTC)

pointed out 5/19 17:27 (UTC)

Analysis method

Energy vs time plot in SK →Search event excess around this period

- Signal period: May 17, 2023 - May 20, 2023 (~2 days, JST)
- Background period: Apr. 14, 2023 - May 10, 2023 (~25 days, JST) 🛱 🚳
- No significant event in the signal region... 117 events observed / 117.7 bkg expected

Cluster search

• The spectrum peak appears around 10 sec. from core collapse. →Condition: two events within 10 seconds with 7 MeV threshold

• The event rate of the 7 MeV threshold is 6.9×10^{-3} /10 sec \rightarrow No significant cluster was observed

 $\Phi_{lowe} =$

- Since there were no candidate neutrino events within 10 sec, we set $N_{90} = 2.3.$
- We assume the Nakazato model: $(13M_{\odot}, \text{ shock revival time} = 200 \text{ ms})$ $(20M_{\odot}, \text{ shock revival time} = 200 \text{ ms})$ [2]Nakazato et al 2013 ApJS 205 2

Fluence upper limit

Supernova model		Supernova model	Fluence upper limit [/cm	
	13 <i>M</i> _☉	Normal mass ordering	1.07×10^{8}	
		Inverted mass ordering	8.96×10^{7}	
	$20 M_{\odot}$	Normal mass ordering	1.11×10^{8}	
		Inverted mass ordering	7.81×10^{7}	

Luminosity upper limit

- From The fluence upper limit, we estimate the luminosity upper limit $E_{iso}[\text{erg/s}] = 4\pi d^2 \times \Phi_{lowe} \int_{E}^{E_{max}} \lambda(E) E dE$
- Luminosity upper limit $\mathcal{O}(10^{54})$ \rightarrow It was not an upper limit that the model could limit.

Supernova model		Luminosity upper limit [erg/s]	Average luminosity [erg/s]	
13M	Normal mass ordering	1.51×10^{54}	2.47×10^{51}	
1.5M _☉	Inverted mass ordering	1.34×10^{54}	2.47×10^{51}	
	Normal mass ordering	1.54×10^{54}	2.28×10^{51}	
$20 M_{\odot}$	Inverted mass ordering	1.28×10^{54}	2.05×10^{51}	

Notification of this report

• We reported to GCN circular and ATEL

https://gcn.nasa.gov/circulars/33916

GCN Circular 33916

Super-Kamiokande: Neutrino search for SN2023ixf Subject

2023-06-05T12:30:44Z (9 months ago) Date

Yusuke Koshio at Super-Kamiokande <koshio@okayama-u.ac.jp> From

M. Nakahata, Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, reports on behalf of the Super-Kamiokande collaboration:

Super-Kamiokande, a 50 ktons water Cherenkov imaging detector situated 1000 meters underground in the Kamioka mine, Gifu Japan, has searched for neutrino signal correlated with SN2023ixf in a time window 2 days before the detection by Oak St. Observatory (2023-05-17 08:45:13 to 2023-05-19 08:45:13), during which Super-Kamiokande took data stably without dead time. In the electron total energy region between 7.0 MeV and 100 MeV within a fiducial volume of 22.5 ktons, no significant signi was observed.

• We could notify for the first time on SK!

https://www.astronomerstelegram.org/?read=16070

	Previous Next ADS	Related	
		16075	Fermi-LAT gamma-ray observations of SN 202
	Neutrino search for SN2023ixf in Super-Kamiokande	16073	Chandra X-ray detectio supernova SN 2023ixf i M101
	ATel #16070; <i>M. Nakahata (University of Tokyo) on behalf of the Super-Kamiokande collaboration</i>	16070	Neutrino search for SN2023ixf in Super- Kamiokande
	on 2 Jun 2023; 08:44 UT	16065	SN 2023ixf continues to
	Distributed as an Instant Email Notice Supernovae	16060	Search the XMM-Newto
	Credential Certification: H. Ishino (snconveners@km.icrr.u-tokyo.ac.jp)		archival data for the progenitor of SN 2023i
	Subjects: Neutrinos, Supernovae	16052	uGMRT radio upper lim Supernova SN 2023ixf M101
	Referred to by ATel #: 16075	16051	X-ray emission of SN 2 and its progenitor
J,		16049	NuSTAR detection of S 2023ixf in M101
d	X Post	16047	Multi-Band Photometric Follow-up of SN 2023ix
gnal	Super-Kamiokande, a 50 ktons water Cherenkov imaging detector situated 1000 meters	16045	Optical observations of 2023ixf at Teide Observ
	underground in the Kamioka mine, Gifu, Japan, has searched for neutrino signal correlated with SN2023ixf in a time window 2 days before the detection by Oak St. Observatory	16043	SN 2023ixf: Upper limit from a neutrino search IceCube
	(2023-05-17 08:45:13 to 2023-05-19 08:45:13), during which Super-Kamiokande took data		
	stably without dead time. In the electron total energy region between 7.0 MeV and 100		
	MeV within a fiducial volume of 22.5 ktons, no significant signal was observed.		

Detection probability

- SN neutrino event estimation
 - SN model: Nakazato model ($20M_{\odot}$, shock revival time = 200 ms)
 - Time window: 10 sec
 - Energy threshold: 7 MeV
 - SK tank volume: 22.5 kton (effective volume)
 - Applying spallation cut: reducing 20% for supernova event
- Background expected 6.9×10^{-3} /10 sec (7MeV threshold)

Detection probability

Detection Probability (%)

- Detection probability (P) in mini-burst region
- $P \ge 5$ % in 2 Mpc

the time of the explosion needs to be determined within several ten sec.

Optical telescopes

 Several telescopes monitor objects in the "mini-burst" region \rightarrow Many supernovae are observed, and it is opened in their catalog

TESS

https://tess.mit.edu/

• I will search the supernova neutrinos with information of the catalog

Summary

- Extra-galactic supernovae within 10 Mpc are called "mini-burst" SN2023ixf was detected on May 19
 - We searched the cluster in 10 sec window
 - SK data showed no excess after reduction cuts and were consistent with the background expectation. →This is reported to ATEL and GCN
- We calculated the fluence upper limit within 10 sec window
 - The upper limit of luminosity: $\mathcal{O}(10^{54})$ [erg/s]
- The detection probability in the mini-burst region
 - 5 20 % chance of $P(N_{\nu} \ge 1)$

Analysis strategy

We use the data sample.

- Background period: Apr. 14, 2023 May 10, 2023 (~25 days, JST)
- Signal period: May 17, 2023 May 20, 2023 (~2 days, JST)
- Total energy criteria: 5 16 MeV
 - Spallation cut
 - 16N cut
- Total energy criteria: 16 100 MeV
 - Muon reduction
 - Spallation cut

- May 10, 2023 (~25 days, JST) 20, 2023 (~2 days, JST)

Probability estimation

- Used poisson distribution P(k)
- Calculated three probability

The probability which observe 0 event

$$P(N_{\nu} \ge 1) = 1 - \exp(-(S+B))$$

The probability which observe 1 event

$$P(N_{\nu} \ge 2) = P(N_{\nu} \ge 1) - (S+B) \times \exp(N_{\nu} \ge 1)$$

 $P(N_{\nu} \ge 3) = P(N_{\nu} \ge 2) - (S+B)^2 \exp(-\frac{1}{2})$

The probability which observe 2 event

$$=\frac{e^{-\lambda}\lambda^k}{k!}$$

o(-(S+B))

$$-(S+B)/2)$$

