# Supernova relic neutrinos and cosmic chemical evolution

#### 

Faculty of Arts and Science, Kyushu University

Yosuke Ashida (Utah), Takuji Tsujimoto (NAOJ) and Ryuichiro Akaho (Waseda)

Refs.: Ashida, Nakazato & Tsujimoto, ApJ. **953** (2023) 151 Nakazato et al. in prep.

March 1, 2024 @ 第10回超新星ニュートリノ研究会



Now

- The Universe is expanding!
- Cosmological redshift z denotes ``time".

Many generations of stars have exploded!

#### Supernova relic neutrinos



- Neutrinos emitted by all core-collapse SNe in the causally-reachable universe constitute diffuse background radiation.
- Can we detect the SN relic neutrinos? What determines their flux and spectrum?

What determines BG luminosity? ↓ supernova relic neutrinos

- luminosity of a source  $\rightarrow$  NS or BH
- the source number
- distance to sources
   cosmological redshift in the expanding universe
- also, neutrino oscillation parameters



$$\frac{Formulation}{dE_{\nu}} = c \int_{0}^{z_{\max}} \frac{R_{CC}(z)}{dE_{\nu}} \left\langle \frac{dN(E_{\nu}')}{dE_{\nu}} \right\rangle \frac{dz}{H_{0}\sqrt{\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}}}$$

• Spectrum of supernova neutrinos:  $\left\langle \frac{dN(E'_{\nu})}{dE'_{\nu}} \right\rangle$ 

- Cosmological parameters:  $H_0 = 67.7 \text{ km/s/Mpc}, \Omega_m = 0.31, \Omega_\Lambda = 0.69$
- Core-collapse rate:  $R_{CC}(z)$ (from Tsujimoto, 2023)

## Neutron stars vs. Black holes

- Neutron stars sustain the self gravity by the nuclear repulsion.
- NS mass sustained by the nuclear repulsion has the upper limit.



• BH is formed beyond the upper limit.



## Nuclear equation of state

- Impacts on the neutrino emission:  $\succ$  for NS case, smaller radius  $\rightarrow$  larger emission
  - : total energy is  $E \sim \frac{GM_{\rm NS}^2}{-}$ RNS
  - $\succ$  for BH case, higher maximum mass  $\rightarrow$  larger emission
- We adopt 3 types of EOS in this study.



3

2.5

2

1.5

 $(\mathrm{M}_{\odot})$ 

mass

Togashi

GW obs.

Shen

12

NS obs

16

220

14

## According to Tsujimoto (2023)

- Galactic chemical evolution implies that:
  - 1. E/S0, Sab galaxies have top-heavy IMF
  - 2. Progenitors with  $\geq 18M_{\odot}$  becomes BH

## According to Tsujimoto (2023)

- Galactic chemical evolution implies that:
  - 1. E/S0, Sab galaxies have top-heavy IMF
  - 2. Progenitors with  $\geq 18M_{\odot}$  becomes BH
- Initial mass function (IMF):  $\psi_{IMF} = \frac{dN}{dM} \propto M^{x-1}$



## According to Tsujimoto (2023)

- Galactic chemical evolution implies that:
  - 1. E/S0, Sab galaxies have top-heavy IMF
  - 2. Progenitors with  $\geq 18M_{\odot}$  becomes BH



#### <u>SRN flux</u>

Ashida, Nakazato & Tsujimoto (2023)



 Comparing with other work, enhancement at low (≤10 MeV) and high (≥30 MeV) energies
 → due to high z and BH sources, respectively

## Signal significance

 SRN + BG is tested against BG only using Bayes' theorem.

SK-Gd (10 yr): 70% neutrontag efficiency HK (10 yr): neutron-tag efficiency same with SK-IV



## Another candidate

- Fallback accretion induced BH formation
  - Successful SN explosions accompanied by a substantial fallback that leads to a BH formation at later times.



black hole (BH)

#### Why we study them?

- If exist, their impact is large.
  - $\rightarrow$  The binding energy  $E_{\rm bin}$  of maximum mass NS is fully converted to neutrinos.
    - $> E_{bin}$  = (baryon mass gravitational mass)  $c^2$
- For example (in Togashi EOS):
  - > canonical mass  $(1.32M_{\odot})$  NS  $E_{\text{bin}} = (1.47 - 1.32)M_{\odot}c^2 = 2.7 \times 10^{53}$  erg
    - $\succ$  maximum mass (2.21 $M_{\odot}$ ) NS

$$E_{\rm bin} = (2.70 - 2.21)M_{\odot}c^2 = 8.8 \times 10^{53} \,\rm erg$$

## Neutrinos from FB accretion

- Akaho, Nagakura & Foglizzo (2024)
  - Steady-state neutrino emission from fallback mass accretion onto PNS (1.41 and  $1.98M_{\odot}$ )

 $\rightarrow M_{\rm g}$  = 1.98  $M_{\odot}$  corresponds to  $M_{\rm b}$  = 2.35  $M_{\odot}$ 

- Combining following 3 components:
  - 1. Core-collapse of massive star
  - 2. Cooling of  $1.98M_{\odot}$  proto-NS cooling
  - 3. Fallback accretion of  $0.35M_{\odot}$

> Max. mass of NS is  $M_{\rm b} = 2.70 M_{\odot}$  (Togashi).

> We evaluate v spectra emitted from fallback.

### According to Akaho+ (2024)



- Fallback produces high-energy v<sub>e</sub> and v
  <sub>e</sub>.
   ➤ Their luminosity gets higher for larger M.
- Emission of v<sub>x</sub> is from inside PNS (2 MeV).
   ➢ Offsets of v<sub>e</sub> and v
  <sub>e</sub> luminosities are as well.

## Model description

• Neutrino spectra of individual component.



Resultant total emission energy: 8.7×10<sup>53</sup> erg

 In this study, we assume that f<sub>FB</sub> to be the fraction of SNe associating FB induced BH formation among all CCSNe.

### <u>SRN flux</u>

Nakazato et al. in prep.



- The impact is larger for NH case
  - The fallback accretion produce mainly  $v_e$  and  $\bar{v}_e$ .
- NH, HB06,  $f_{\rm FB}$  = 0.5 case is close to limits.

### Event rate

Nakazato et al. in prep.



• For NH and  $f_{FB} = 0.5$  case, event rate in the detectable range (16-30 MeV) gets twice.

## <u>Summary</u>

- Supernova relic neutrino (DSNB) flux is evaluated based on the recent Galactic chemical evolution model.
  - Both the core-collapse rate and fraction of BH formations are higher than in previous models.
  - $\succ$  The detection will be achieved in near future.
- Contribution of the fallback induced BH formations enhances the event rate.
  - > They produce high-energy  $v_e$  and  $\bar{v}_e$ .
  - > Their fraction may be constrained by SRN.