Development of a neutrino transport equation calculation code using the M1-closure method to improve the proto-neutron star cooling calculation code Tokyo University of Science Takaki Shimura, Hideyuki Suzuki

1.Objective and Background

- A code describing the cooling process of proto-neutron stars (PNSC) was created by H.Suzuki (1993) using multi-energy flux limited diffusion (FLD) scheme to solve Boltzmann equation approximately.
- To prepare for future observations, the current code needs to be improved and updated to make it more accurate and

<u>3.Numerical methods and test</u>

< Outline >

- ✓ Solve implicitly
- ✓ Use Newton-Raphson method

capable of long-time calculations.

• Therefore, taking these points into account, I am aiming to solve the Boltzmann equation using M1-closure scheme.

<u>2.Formalism</u>

Moment scheme

Remove the full angular dependence of the Boltzmann equation by expanding the neutrino distribution function as a series of moments

✓ Flux limited diffusion (original code)

Closes the moment expansion after the zeroth moment

✓ M1-closure (Created Code)

Evolves both the energy density and the moment density but assumes an analytic closure for higher moments.

I. Metric

 $ds^{2} = e^{2\phi(m,t)}dt^{2} - e^{-2\lambda(m,t)}dm^{2} - r(m,t)^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$

Details

II. Boltzmann equation (Lindquist equation)

$$\begin{split} D_t f_{\nu} + \mu D_m f_{\nu} - \omega \left[\mu D_m \phi + \mu^2 D_t \Lambda + (1 - \mu^2) \frac{U}{r} \right] \frac{\partial f_{\nu}}{\partial \omega} & D_t = e^{-\phi} \partial_t \quad D_m = e^{-\lambda} \partial_m \\ + (1 - \mu^2) \left[-D_m \phi + \frac{\Gamma}{r} + \mu \left(\frac{U}{r} - D_t \Lambda \right) \right] \frac{\partial f_{\nu}}{\partial \mu} = Coll[f_{\nu}] \end{split}$$

III. Equation for moments (Steady-flow for simplicity) $\partial_t \vec{\mathcal{U}} + \partial_m (4\pi r^2 \rho \mathcal{F}) = S$

$$\begin{array}{ll} \underline{\text{Moment}} & \underline{\text{Variables}} \\ n_{\nu} = \frac{\omega^2}{(hc)^3} \int f_{\nu} d\Omega & \vec{\mathcal{U}} = \frac{1}{\rho} (n_{\nu}, F_{\nu}) & \vec{\mathcal{F}} = 4\pi cr^2 (F_{\nu}, P_{\nu}) \\ F_{\nu} = \frac{\omega^2}{(hc)^3} \int f_{\nu} \mu d\Omega & \vec{\mathcal{S}} = \frac{1}{\rho} \Big(S^0, S^1 - 4\pi rc\rho e^{\phi} (n_{\nu} - P_{\nu}) \partial_m \big(re^{-\phi} \big) \Big) \\ P_{\nu} = \frac{\omega^2}{(hc)^3} \int f_{\nu} \mu^2 d\Omega & \end{array}$$

II. Advection term (energy space)

Upwind scheme

If the time variation of density is negative (contraction), the energy is considered to increase. Consider the reverse in the same way.

III. Source term (matter/geometric)

Time derivative : <u>forward difference</u>

Mass derivative : <u>central difference</u>

Closure : Levermore, ME, etc.

IV. Neutrino-Matter reaction

NuLib (O'Connor 2015)

Absorption and emission

production/annihilation

Elastic scattering

Thermal pair

 $egin{aligned}
&
u + n
ightarrow
u + n
ightarrow
u + A
ig$

 $\overline{\nu_e} + p \rightarrow e^+ + n$

 $\nu + e \rightarrow \nu + e$

 $\nu_e + n \rightarrow e^- + p \quad \nu_e + A \rightarrow e^- + A$

4. Conclusion/Future Plans

- I developed a code to calculate steady-state flow using the M1-closure scheme and performed a test calculation of the advection term.
- Comparison with the steady flow calculated by the original code (with FLD).
- Incorporating the created code into the original code.
- Consider additional reactions.

Inelastic scattering