超新星前兆ニュートリノアラームの研究

Development of Pre-Supernova Alarm System

Keita Saito

Feb. 29th, 2024

第10回 超新星ニュートリノ研究会

Contents

- 1. Introduction
- 2. Combined pre-SN alarm system
- 3. Rate + Shape analysis

1. Introduction

Pre-supernova (pre-SN) neutrino

All flavor neutrinos are predominantly emitted in neutrino cooling phase during the last stage of

massive (M > 8 M_{\odot}) stars.

Main processes are

➤ Thermal pair production: $e^+e^- \rightarrow \nu \bar{\nu}$

Weak interactions

- The observation of pre-SN neutrinos provides
 - Insight into stelar evolution
 - Hints toward understanding of the neutrino mass ordering
 - Early alarm system before core collapse
- KamLAND and Super-Kamiokande are capable to detect the neutrinos from nearby stars.
 - ightharpoonup Betelgeuse (15 M $_{\odot}$, 150pc) etc.

KamLAND

Kamioka Liquid scintillator Anti-Neutrino Detector (since 2002)

Inner detector (neutrino detector)

1kt liquid scintillator

1325 17inch + 554 20inch PMTs

Outer detector (veto detector)

Water Cherenkov detector

- Low energy threshold: $E_{\bar{\nu}_e} > 1.8 \text{ MeV}$
- Low background (Main BG: reactor $\bar{\nu}_e$)
 - Delayed coincidence of prompt and delayed signal
 - \succ KamLAND has unique sensitivity to pre-SN $\overline{\nu}_e$
 - > Pre-SN alarm system has been launched since 2015

Ref) Asakura et al. 2016

y 2.2MeV

Super-Kamiokande

41.4 m

Charged particle

Cylerenkov light

39.3 m

Super-Kamiokande (SK) is a water Cherenkov neutrino detector

in Kamioka mine. (since 1996)

Inner detector (neutrino detector)

22.5 kt water Cherenkov detector with 11000 20inch PMTs

Outer detector (veto detector)

Water Cherenkov detector with 1885 8inch PMTs

SK-Gd experiment

- Gadolinium (Gd) is loaded into water.
- SK is capable to capture neutrons.
 - > SK is capable to detect pre-SN $\overline{\nu}_e$ through IBD (Main BG is reactor $\overline{\nu}_e$)
 - > Pre-SN alarm system has been launched since 2021_{Ref) Machado et al. 2022}

2. Combined pre-SN alarm system

Combined pre-SN alarm system

Both KamLAND and SK alarm system is based on significance of statistical excess of BG number.

KamLAND

Lower BG rate

Earlier warning to supernovae

SK

Larger target mass
 Significance is increased rapidly

Combined alarm system with KamLAND and SK is expected to benefit from advantages of both detectors and improve the alarm sensitivity.

Concept of combined alarm

The alarm system is triggered based on statistical excess of BG level of both KamLAND and SK.

Example of Alert Criteria

Likelihood function

 $L(n_{\text{KL}}^{\text{obs}}, n_{\text{SK}}^{\text{obs}}) = \text{Pois}(n_{\text{KL}}^{\text{obs}}, n_{\text{KL}}^{\text{BG}}) \times \text{Pois}(n_{\text{SK}}^{\text{obs}}, n_{\text{SK}}^{\text{BG}})$ n^{obs} : number of candidates

 n^{BG} : number of expected BG

False alarm rate (FAR)

- Frequency of false positive alarms based on BG number
- It is calculated with toy MC simulation assuming only BG

The system provides warning when the combinations of $n_{\rm KL}^{\rm obs}$ and $n_{\rm SK}^{\rm obs}$ are in **blue region** (\leq 1 FAR/century).

Combined alarm sensitivity

Combined alarm system provides earlier warning time than individual alarms.

≤ 1 / century ≤ 10 / century ≤ 100 / century

For signals from any models or mass orderings, combined alarm can be issued at least 2.6 hours before core collapse.

Warning time [hour] (Expected significance corresponding to FAR < 1/century)

model	Mass ordering	KamLAND	SK	Combined
Odrzywolek	NO	7.4	6.3	8.7
	IO	0.4	2.1	2.6
Patton	NO	7.3	10.9	12.9
	IO	0.7	4.3	4.8

Online combined alarm system (since 2023)

- Combined alarm system is running in both KamLAND and SK side (redundancy system).
- BG number is average one over a past period. (KamLAND: 90 days, SK: 30 days)
- Total latency time is approximately 6 minutes.
- The system outputs every 5 minutes.

3. Rate+Shape analysis

Rate+Shape analysis

- Combined pre-SN alarm has higher sensitivity than individual detectors.
- In order to further enhance alarm sensitivity,

Rate analysis (current alarm system)

- Based on BG rate
- $ightharpoonup L(n^{\text{obs}}) = \text{Pois}(n^{\text{obs}}, n^{\text{BG}})$

Rate+Shape analysis

- Based on BG rate and time spectrum
- $L(n^{\text{obs}}, \{t_i\}) = \text{Pois}(n^{\text{obs}}, n^{\text{BG}}) \prod_{i=1}^{n^{\text{obs}}} \text{Prob}(t_i)$ $\{t_i\} : \text{event time array}$

(number of $\{t_i\}$ elements = n^{obs})

We shows the alarm sensitivity based on the simulation assumed KamLAND.

Alarm sensitivity

Alarm sensitivity at KamLAND (detection probability=50%±1σ)

Target star

Betelgeuse ($15M_{\odot}$, 150 pc)

Model

Patton model, Normal mass ordering

Detection probability

The proportion of results exceeding the significance

Alarm sensitivity is improved.

Summary and prospect

Summary

- KamLAND and SK have unique sensitivities to pre-SN neutrinos.
 - Pre-SN early warning system
- In order to improve alarm sensitivity, We develop combined alarm system of KamLAND and SK.
 - The combined alarm system has been running and open to public. (https://www.lowbg.org/presnalarm/)

Rate+Shape analysis has higher alarm sensitivity than Rate analysis (current alarm).

Prospect

Combined alarm system

■ We will submit paper of combined pre-SN alarm system.

Rate+Shape analysis

- ☐ Check of **the robustness** for this model depending system.
- Study of estimation of core collapsed time.
 - Core collapsed time is required for calculation of the likelihood function.
- □ Development of rate+shape(time)+shape(energy) alarm system.