

Measurement of the atmospheric neutrino-oxygen neutral-current quasielastic cross section and study of nucleon-nucleus interaction model in the SK-Gd experiment

SK-Gd実験における大気ニュートリノ**-**酸素原子核 中性カレント準弾性散乱反応断面積の測定および核子**-**原子核反応モデルの研究

> The 10th Supernova Neutrino Workshop February 29th - March 1st, 2024 Seiya Sakai (Okayama Univ.)

Super-Kamiokande Gadolinium (SK-Gd)

- Started from July 2020
- Load 0.011% mass concentration of Gd in SK
	- \rightarrow Aiming the first observation of the diffuse supernova neutrino background (DSNB)

Why Gd?

- Largest thermal neutron capture cross section among natural elements
	- \rightarrow High capture rate at low concentrations
- Emit a total of ~8 MeV of gamma rays
	- \rightarrow Neutron tagging efficiency is largely improved

DSNB search in SK-Gd Dumber of events [bin] 12

- Search for the inverse beta decay by electr $\mathscr{H}_{\mathscr{H}}$
- Detect positron (prompt signal) and neutrof $\mathbb{Z}/\mathbb{Z}_{q}$
	- \rightarrow Can remove many backgrounds witho $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

14 **SK-VI Data (552.2 days) Atmospheric-**ν **(non-NCQE) Atmospheric-**ν **(NCQE) Spallation** ⁹Li **Reactor-**ν **Accidental coincidence DSNB (Horiuchi+09 6-MeV, Maximum)** 111111N11111

MeV1 8 DSNB search result lising the observed data of 0.011% mass concentration of Gd

0

2

10

 E_{rec} [MeV]

NCQE events in DSNB search

- Neutral-current quasielastic scattering (NCQE) reaction Atmospheric neutrino knocks out a nucleon (neutron) of the oxygen nucleus
- Gamma ray and neutron pairs mimic DSNB events
	- Difficult to distinguish from DSNB events
	- Important to estimate NCQE events precisely

NCQE events in DSNB search

- Neutron energy by neutrino (primary) interaction: $O(10)$ $O(10^3)$ MeV
	- \rightarrow Additional gamma rays and neutrons are generated by nucleon-nucleus (secondary) interaction
- Impossible to distinguish from primary interaction

To estimate NCQE events precisely, we must understand NCQE cross section and secondary interaction

Measurement of the atmospheric neutrino-oxygen NCQE cross section

Data analysis

- Select NCQE events from a 552.2 day dataset (August 2020 - June 2022, Gd: 0.011%)
- Energy of prompt signal: 8 30 MeV
- Number of delayed signals ≥ 1

Data analysis

• Cherenkov angle of prompt signal > 50 degrees

0

2

4

6

8

10

12

Events

Results

NCQE cross section

• Flux-averaged theoretical cross section

$$
\left\langle \sigma_{\text{NCQE}}^{\text{theory}} \right\rangle = \frac{\int_{160 \text{ MeV}}^{10 \text{ GeV}} \Sigma_{i=v,\overline{v}} \phi_i(E) \times \sigma_i(E)_{\text{NCQE}}^{\text{theory}} dE}{\int_{160 \text{ MeV}}^{10 \text{ GeV}} \Sigma_{i=v,\overline{v}} \phi_i(E) dE} = 1.02 \times 10^{-38} \text{ cm}^2/\text{oxygen}
$$

• Ratio of observed NCQE events to expected NCQE events (f_{NCOE})

$$
f_{\rm NCQE} = \frac{N^{\rm obs} - N_{\rm NC\,non-QE}^{\rm exp} - N_{\rm Others}^{\rm exp}}{N_{\rm NCQE}^{\rm exp}} = 0.725
$$

• Measured cross section

$$
\langle \sigma_{\text{NCQE}}^{\text{measured}} \rangle = f_{\text{NCQE}} \times \langle \sigma_{\text{NCQE}}^{\text{theory}} \rangle
$$

= 0.74 \pm 0.22(stat.) \times 10⁻³⁸ cm²/oxygen

Systematic uncertainties

Results

• $\langle \sigma_{\rm NCQE}^{\rm measured} \rangle = 0.74 \pm 0.22 \text{(stat.)} ^{+0.85}_{-0.15} \text{(syst.)} \times 10^{-38} \text{ cm}^2 \text{/oxygen}$

 \rightarrow Consistent with $\left< \sigma_{\rm NCQE}^{\rm theory} \right> = 1.02 \times 10^{-38}$ ${\rm cm^2/oxy}$ gen within the uncertainties

Systematic uncertainty is so large, why?

Comparison of secondary interaction models using atmospheric neutrinos

Systematic uncertainties

• Systematic uncertainty of secondary interaction is largest

Why so large?

Secondary interaction models

• Intranuclear cascade process

Process of a chain of reactions triggered by a reaction between an incident particle and a nucleon in a nucleus

• Evaporation process

Process of emitting nucleons and gamma rays isotropically when an excited residual nucleus deexcites

Secondary interaction models

• Available secondary interaction models

Bertini Cascade Model (BERT, SK official model)

Binary Cascade Model (BIC)

Liège Intranuclear Cascade Model (INCL++)

→ Evaporation process is so different

BERT \rightarrow Continuous transitions till the end

 BIC , INCL++ \rightarrow Continuous to discrete transitions (more realistic)

Comparison of secondary interaction models

• Compared the following distributions in BERT, BIC, and INCL++ Cherenkov angle of prompt signal \leftarrow Number of gamma rays Energy of prompt signal \leftarrow Energy of gamma rays

Number of delayed signals \leftarrow Number of neutrons

Results

- Evaluated each distribution using chi-square
	- \rightarrow Not conclusive due to small statistics
	- $\rightarrow \chi^2$ in BIC and INCL++ is smaller than that in BERT in all distributions
	- \rightarrow Suggested that BIC and INCL++ reproduce data better than BERT

Systematic uncertainty

Why systematic uncertainty of secondary interaction is large?

- Compared various secondary interaction models for the first time
	- \rightarrow Suggested that BIC and INCL++ reproduce data better than BERT
- Cannot determine which model is correct at this work
	- \rightarrow The difference in the number of events is taken as the systematic uncertainty

Systematic uncertainty

- Number of events in Cherenkov angle of prompt signal $(\theta_C) \in [78, 90]$ degrees
	- \rightarrow BERT is ~2.2 σ far from data at this work

Systematic uncertainty

- SK continues to observe at 0.03% Gd mass concentration (SK-VII)
- Evaporation model can be determined at 5σ by using ~4 years of data in SK-VII
	- \rightarrow Systematic uncertainty of NCQE cross section can be reduced

Summary

- Performed NCQE cross section measurement using a 552.2 day dataset in SK-Gd experiment (Gd: 0.011%)
	- \rightarrow $\rm{\langle\sigma_{N CQE}^{measured}\rangle} = 0.74 \pm 0.22(stat.) ^{+0.85}_{-0.15}(syst.) \times 10^{-38}$ cm²/oxygen
	- $\rightarrow \;$ Consistent with $\left< \sigma_{\rm NCQE}^{\rm theory} \right> = 1.02 \times 10^{-38} \; {\rm cm^2/oxygen}$
- Compared several secondary interaction models for the first time
	- \rightarrow Suggested that BIC and INCL++ reproduce data better than BERT
- Evaporation model can be determined at 5σ by using ~4 years of data in SK-VII
	- \rightarrow Systematic uncertainty of NCQE cross section can be reduced

Super-Kamiokande (SK)

- Large water Cherenkov detector
- Started in 1996
- Consist of 50 kilotons ultrapure water and photomultiplier tubes (PMTs)

 n : Refractive index $\beta = v/c$

$$
n \sim 1.34
$$

$$
\beta \sim 1
$$

$$
\rightarrow \theta_{C} \sim 42 \text{ degrees}
$$

Supernova neutrino observation

• Supernova (SN)

Explosion caused by a star with more than 8 times the solar mass at the end of its life

• More than 99% of released energy is carried away by neutrinos

- Kamiokande, IMB, and Baksan observed neutrinos from SN1987A
	- \rightarrow Next neutrino observation is expected
- Rare in the vicinity where SN neutrinos are observable
	- \rightarrow SN neutrino observation is only SN1987A

Diffuse Supernova Neutrino Background

• Diffuse Supernova Neutrino Background (DSNB)

Superposition of neutrinos emitted from all past SNe

- Floating in space like background radiation
- \rightarrow Small in number, but always potentially observable

 \sim 3.2.3. September of the sum in flux from the sum of \sim Energy spectrum with time information

Diffuse Supernova Neutrino Background

• Diffuse Supernova Neutrino Background (DSNB)

Superposition of neutrinos emitted from all past SNe

• DSNB flux

 $d\Phi(E_v)$ $\frac{d\Phi(E_{\nu})}{dE_{\nu}} = c \int_0^{Z_{\rm max}} \frac{dz}{H_0 \sqrt{\Omega_m (1 + \frac{1}{\mu})}}$ $\frac{dz}{H_0\sqrt{\Omega_m(1+z)^3+\Omega_\Lambda}}\Big[R_{\text{CCSN}}(z)\int_0^{Z_{\text{max}}}\psi_{\text{ZF}}(z,Z)\left\{\int_{M_{\text{min}}}^{M_{\text{max}}}\psi_{\text{IMF}}(M)\frac{dN(M,Z,E'_\nu)}{dE'_\nu}\right.$ $\frac{dE_v}{dE_v'} dM \frac{dZ}{dE_v'}$

- \rightarrow Depend on SN rate, metallicity, initial mass function, Number of neutrinos generated by SN, etc. K. ABE et al. PHYS. REV. D 104, 122002 (2021)
- There is a range of one order of magnitude on theoretical predictions of DSNB flux
	- \rightarrow DSNB observation would contribute to our understanding of SN mechanism and star formation

Supernova rate

- Lifetime of a massive star occurring supernova is short enough compared to the time scale of the evolution of the universe
	- \rightarrow Star formation and supernova can be approximated as the same time
	- \rightarrow Should be possible to predict the supernova rate from the star formation rate
- Rate obtained from optical observations is about half of that predicted from the star formation rate
	- \rightarrow Dark supernovae?
		- Is there light-blocking material?
- Can understand the star formation rate, supernova rate, and supernova mechanism from DSNB energy spectra

Thermal neutron capture cross sections

Table 1. Relative abundances of gadolinium isotopes in natural gadolinium [20] and their radiative thermal neutron capture cross sections [1].

Neutron capture rate

Total energy of gamma rays

Neutron capture time constant

DSNB search in SK experiment

- Search for the inverse beta decay by electron antineutrinos $(\bar{v}_e + p \rightarrow e^+ + n)$
	- Cross section is 1-2 orders of magnitude larger than others at $<$ 30 MeV
- Detect positron (prompt signal) and neutron (delayed signal) pairs
	- \rightarrow Can remove backgrounds without neutrons
- So far, delayed signal was 2.2 MeV gamma ray by neutron capture on proton
	- \rightarrow Neutron detection efficiency was low (~20%)

DSNB flux upper limits

NCQE reaction

- Neutral-current quasielastic scattering (NCQE) reaction
	- \rightarrow Neutrino ($(0(10^2) 0(10^4)$ MeV) knocks out a nucleon in a nucleus

NCQE reaction on oxygen

- ¹⁶O has three states $(p_{1/2}, p_{3/2},$ and $s_{1/2})$
- $p_{1/2}$ state is knocked out
	- \rightarrow Residual nucleus: ¹⁵N or ¹⁵O (ground state)
	- \rightarrow No particle is generated
- $p_{3/2}$ or $s_{1/2}$ state is knocked out
	- \rightarrow Residual nucleus: ¹⁵N or ¹⁵O (excited state)
	- \rightarrow Gamma rays and nucleons are generated

NCQE cross section measurement in SK

• Measured NCQE cross section using atmospheric neutrinos

 \rightarrow $\rm{\left<\sigma_{NCQE}^{measured}\right> = 1.01 \pm 0.17(stat.) ^{+0.78}_{-0.30}(syst.) \times 10^{-38} \ cm^2/oxygen^*}$

- Only one secondary interaction model was available • Only one secondary interaction model was available FIG. 9. The gray histogram shows the atmospheric neutrino
- Delayed signal: 2.2 MeV gamma ray by neutron capture on proton • Delayed signal: 2.2 MeV gamma ray by neutron capture on proton $\frac{1}{\sqrt{2}}$ is section.
- → Neutron detection efficiency was low (~20%) \rightarrow **Neutron detection emotency w**

* L. Wan *et al*. (SK Collaboration), Phys. Rev. D **99**, 032005 (2019) $\frac{1}{\sqrt{1-\frac{1$ L . Wall et al. (SK Collaboration), Priys. Hev. D **99**, 0320

NCQE cross section measurement in T2K numbers is ^ð10[−]³⁸ cm²=oxygenÞ². στ στη Π_ασ **10** ×1.5

• Measured NCQE cross section using accelerator neutrinos $\rightarrow \langle \sigma_{\nu-\rm NCQE}^{\rm measured} \rangle = 1.70 \pm 0.17 ({\rm stat.})^{+0.51}_{-0.38} ({\rm syst.}) \times 10^{-38} ~{\rm cm^2/oxygen^*}$ \rightarrow $\rm{\langle\sigma_{\rm{\bar{\nu}}-N CQE}^{\rm{measured}}\rangle=0.98\pm0.16(stat.)^{+0.26}_{-0.19}(syst.)\times10^{-38}~cm^2/oxygen^*}$ • Measured NCQE cross section using accelerator neutrinos \rightarrow $\sqrt{\nu_{\bar{v}}-NCQE}$ / \rightarrow 0.70 \pm 0.10(Stat. $J=0.19$ ist. $j \times 10^{-38}$ cm²/oxygen $\frac{1}{2}$ rst.) \times 10^{-38} $\, {\rm cm}^2/{\rm oxygen}^*$ [GeV] E^ν $\ddot{}$ 0.5×10^{-38} 21 $*$

* K. Abe *et al*. (T2K Collaboration), Phys. Rev. D **100**, 112009 (2019) ^{*} K. Abe *et al*. (T2K Collaboration), Phys. Rev. D **100**, 112009 (2019)

Backgrounds

Decays of radioactive isotopes by muon nuclear spallation (Spallation events)

- Lithium-9 (⁹Li)
	- \rightarrow High rate and long half-life

End-point energy [MeV]

e or !

e + **n**

اتا¹¹،

Backgrounds

Atmospheric neutrino charged-current (CC) reactions (CC events)

- Electron or muon (prompt signal) and neutron (delayed signal) are generated
- Muon energy is below Cherenkov threshold
	- \rightarrow Decay electron is generated
	- \rightarrow Electron-neutron pair

Backgrounds

Atmospheric neutrino NC single meson production

- Similar to NCQE events
	- \rightarrow Remains a lot even after event selection

Reactor neutrinos (Reactor events)

- IBD same as DSNB
- Low energy and little effect on this analysis

Accidental events

- Accidentally electron-neutron pair is formed
- Mostly nuclear spallation events without neutrons and neutron misidentification events

Number of events

- 38 events remained after event selection
- $N_{\text{NCQE}}^{\text{exp}}$ is different largely among secondary interaction models

Systematic uncertainties

- $N_{\text{spallation}}^{\text{exp}}$ $: 60.0\% \leftarrow$ From DSNB analysis
- $N_{\text{Reactor}}^{\text{exp}}$ $: 100.0\% \leftarrow$ From DSNB analysis
- $N_{\text{Accidental}}^{\text{exp}} = \epsilon_{\text{mis}} \times N_{\text{pre-ntag}}^{\text{obs}}$: 4.6% \leftrightarrow From systematic uncertainty of ϵ_{mis} and

statistical uncertainty of $N_{\rm pre-ntag}^{\rm obs}(=5,447)$

Systematic error of NCQE cross section

• Determine systematic uncertainty of

 $\sigma_\mathrm{NCQE}^\mathrm{measured} \rangle =$ $N^{\rm obs}$ – $N^{\rm exp}_{\rm NC\,non-QE}$ – $N^{\rm exp}_{\rm Others}$ $N_{\text{NCQE}}^{\text{exp}}$ $\frac{\text{on}-\text{QE}}{\text{exp}}$ \propto $\left\langle \sigma^\text{theory}_\text{NCQE} \right\rangle$ using toy MC

- 1. Determine $N_{\text{NCQE}}^{\text{exp}}, N_{\text{NC non}-\text{QE}}^{\text{exp}},$ and $N_{\text{others}}^{\text{exp}}$ according to each uncertainty
- 2. Calculate $\langle \sigma^\mathrm{measured}_\mathrm{N CQE}\rangle$ to plot
- 3. Repeat procedures above 1 million times
- 4. Range of 1σ from

 $\langle \sigma_{\rm NCQE}^{\rm measured} \rangle = 0.74 \times 10^{-38}$ ${\rm cm^2/oxygen}$

is the systematic uncertainty

• $\langle \sigma_{\text{NCQE}}^{\text{measured}} \rangle = 0.74 \pm 0.22 \text{(stat.)}^{+0.85}_{-0.15} \text{(syst.)}$

Secondary interaction models

- GEANT3-based SK detector simulation was used in previous study*
- Geant4-based SK detector simulation was developed
	- \rightarrow Can compare various secondary interaction models

Bertini Cascade Model (BERT, SK official model)

Binary Cascade Model (BIC)

Liège Intranuclear Cascade Model (INCL++)

* L. Wan *et al*. (SK Collaboration), Phys. Rev. D **99**, 032005 (2019)

Secondary interaction models

Differences

- Reaction point with nucleons in the nucleus
	- BERT \rightarrow Determined using mean free path
	- BIC, INCL++ \rightarrow Determined using closest approach distance

Differences

- Stopping time of intranuclear cascade process
	- BERT, BIC \rightarrow Stop when all (escapable) particles escape the nucleus

INCL++ \rightarrow Forced to stop at the following time (t_{stop})

$$
t_{\rm stop} = 70 \, \text{fm}/c \times \left(\frac{A}{208}\right)^{0.16}
$$

• Nuclear model (nucleon density)

BERT \rightarrow Change discretely with distance from center of the nucleus BIC, INCL++ \rightarrow Change smoothly with distance from center of the nucleus

• Condition for termination of the evaporation process

BERT \rightarrow End when excitation energy falls below 10^{-15} MeV

 BIC , INCL++ \rightarrow End after continuous and discrete transitions

Number of gamma rays

- In BERT, the number of gamma rays per neutron inelastic scattering is large
- BIC and INCL++ show similar tendency

Number of gamma rays

- In BERT, the number of gamma rays by neutron inelastic scattering per event is large
- BIC and INCL++ show similar tendency

Energy of gamma rays

- In BERT, there are many continuous components in addition to peaks of deexcitation gamma rays
- BIC and INCL++ show similar tendency

Number of neutron captures

- In BERT, the number of neutron captures per event is large
- BIC and INCL++ show similar tendency

Cherenkov angle of prompt signal

- What is the peak around 60 degrees?
	- \rightarrow No problem in reconstructed vertex and other variables
	- \rightarrow Concluded that it was a statistical fluctuation

Reconstructed vertex

• Events are uniformly distributed

• Calculate χ^2 using Poisson likelihood

$$
\chi^{2} = 2 \sum_{i=1}^{\text{bin}} \left(N^{\text{exp}, i} - N^{\text{obs}, i} + N^{\text{obs}, i} \ln \frac{N^{\text{obs}, i}}{N^{\text{exp}, i}} \right)
$$

- N^{obs} : The observed number of events
- N^{exp} : The expected number of events
- \rightarrow Not conclusive due to small statistics
- $\rightarrow \chi^2$ in BIC and INCL++ is smaller than that in BERT in all distributions

χ^2/ndf

• p-value is larger (model is closer to data) as χ^2 /ndf is smaller

Figure 40.2: The 'reduced' χ^2 , equal to χ^2/n , for *n* degrees of freedom. The curves show as a function of *n* the χ^2/n that corresponds to a given *p*-value.

Statistics

- SK continues to observe at 0.03% Gd mass concentration (SK-VII)
- Neutron tagging efficiency improved from 35.6% (Gd: 0.011%, SK-VI) to 63.0% (Gd: 0.03%, SK-VII)
	- \rightarrow Statistics increases by about 1.4 times with the same live time

[R](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.052505)eferences

- [1](https://www-sk.icrr.u-tokyo.ac.jp/en/sk/experience/gallery/) S. Sakai *et al*., Phys. Rev. D **109**, L011101 (2024)
- [2](https://iopscience.iop.org/article/10.1086/383303) J. F. Beacom and M. R. Vagins, Phys. Rev. Lett. **93**, 171101 (2004)
- [3](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.122002) Y. Koshio, "The supernovae neutrino detection in Super- and Hyper-Kamiokande", LPNHE, Paris, France (2023)
- 4 M. Harada *et al*., Astrophys. J. Lett. **951**, L27 (2023)
- 5 M. Harada, "Development of Neutron Tagging Algorithm and Search for Supe Neutrino in SK-Gd Experiment", Ph.D. Thesis, Okayama University (2023)
- 6 A. M. Ankowski *et al*., Phys. Rev. Lett. **108**, 052505 (2012)
- 7 E. Richard *et al.*, Phys. Rev. D **94**, 052001 (2016)
- 8 Super-Kamiokande, "Gallery"
- 9 S. Ando, Astrophys. J. **607**, 20 (2004)
- 10 K. Abe *et al*., Phys. Rev. D **104**, 122002 (2021)

[Re](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.112009)ferences

- 11 S. Horiuchi *et al*., Astrophys. J. **738**, 154 (2011)
- 12 T. Tanaka *et al*., Prog. Theor. Exp. Phys. **2020**, 043D02 (2020)
- 13 M. Vagins, "A Gadolinium-loaded Super-Kamiokande", Neutrino 2022 (2022)
- 14 K. Abe *et al*., Nucl. Instrum. Methods Phys. Res., Sect. A **1027**, 166248 (2022)
- 15 F. Nakanishi, "Developing a novel analysis method for supernova neutrino ob Super-Kamiokande", Master's Thesis, Okayama University (2023)
- 16 L. Wan *et al*., Phys. Rev. D **99**, 032005 (2019)
- 17 K. Abe *et al*., Phys. Rev. D **100**, 112009 (2019)
- 18 R. L. Workman *et al*., Prog. Theor. Exp. Phys. **2022**, 083C01 (2022)