

Measurement of the atmospheric neutrino-oxygen neutral-current quasielastic cross section and study of nucleon-nucleus interaction model in the SK-Gd experiment

SK-Gd実験における大気ニュートリノ-酸素原子核 中性カレント準弾性散乱反応断面積の測定および核子-原子核反応モデルの研究

> The 10th Supernova Neutrino Workshop February 29th - March 1st, 2024 Seiya Sakai (Okayama Univ.)

Super-Kamiokande Gadolinium (SK-Gd)

- Started from July 2020
- Load 0.011% mass concentration of Gd in SK
 - → Aiming the first observation of the diffuse supernova neutrino background (DSNB)

Why Gd?

- Largest thermal neutron capture cross section among natural elements
 - \rightarrow High capture rate at low concentrations
- Emit a total of ~8 MeV of gamma rays
 - \rightarrow Neutron tagging efficiency is largely improved

DSNB search in SK-Gd

- Search for the inverse beta decay by electric terms
- Detect positron (prompt signal) and neutrol
 - \rightarrow Can remove many backgrounds without

³ DSNB search result using⁰the²observed data of 0.011% mass concentration of Gd

0

NCQE events in DSNB search

- Neutral-current quasielastic scattering (NCQE) reaction Atmospheric neutrino knocks out a nucleon (neutron) of the oxygen nucleus
- Gamma ray and neutron pairs mimic DSNB events
 - \rightarrow Difficult to distinguish from DSNB events
 - → Important to estimate NCQE events precisely

NCQE events in DSNB search

- Neutron energy by neutrino (primary) interaction: $O(10) O(10^3)$ MeV
 - → Additional gamma rays and neutrons are generated by nucleon-nucleus (secondary) interaction
- Impossible to distinguish from primary interaction

To estimate NCQE events precisely, we must understand NCQE cross section and secondary interaction

Measurement of the atmospheric neutrino-oxygen NCQE cross section

Data analysis

- Select NCQE events from a 552.2 day dataset (August 2020 - June 2022, Gd: 0.011%)
- Energy of prompt signal: 8 30 MeV
- Number of delayed signals ≥ 1

Data analysis

• Cherenkov angle of prompt signal > 50 degrees

Events

12

10

8

6

2

True rings of 2γ

Recon ring

NCQE

PMT hits

Results

NCQE cross section

Flux-averaged theoretical cross section

$$\left\langle \sigma_{\text{NCQE}}^{\text{theory}} \right\rangle = \frac{\int_{160 \text{ MeV}}^{10 \text{ GeV}} \sum_{i=\nu,\overline{\nu}} \phi_i(E) \times \sigma_i(E)_{\text{NCQE}}^{\text{theory}} dE}{\int_{160 \text{ MeV}}^{10 \text{ GeV}} \sum_{i=\nu,\overline{\nu}} \phi_i(E) dE} = 1.02 \times 10^{-38} \text{ cm}^2/\text{oxygen}$$

 Ratio of observed NCQE events to expected NCQE events (*f*_{NCQE})

$$f_{\rm NCQE} = \frac{N^{\rm obs} - N_{\rm NC \, non-QE}^{\rm exp} - N_{\rm Others}^{\rm exp}}{N_{\rm NCQE}^{\rm exp}} = 0.725$$

N ^{obs}	38
$N_{ m NCQE}^{ m exp}$	28.7
N ^{exp} _{NC non-QE}	13.3
$N_{ m Others}^{ m exp}$	4.0

Measured cross section

$$\langle \sigma_{\text{NCQE}}^{\text{measured}} \rangle = f_{\text{NCQE}} \times \langle \sigma_{\text{NCQE}}^{\text{theory}} \rangle$$

= 0.74 ± 0.22(stat.) × 10⁻³⁸ cm²/oxygen

Systematic uncertainties

	$N_{ m NCQE}^{ m exp}$	N _{NC non-QE}
Atmospheric neutrino flux	±18	.0%
Atmospheric neutrino/antineutrino ratio	±5.0%	
Cross section	-	±18.0%
Primary interaction	+1.5%/-9.4%	+0.0%/-2.4%
Secondary interaction	-30.9%	-24.3%
Energy cutoff	-2.1%	-1.5%
Data reduction	±1.4%	
Neutron tagging	±6.4%	

Results

• $\langle \sigma_{\text{NCQE}}^{\text{measured}} \rangle = 0.74 \pm 0.22 (\text{stat.})_{-0.15}^{+0.85} (\text{syst.}) \times 10^{-38} \text{ cm}^2 / \text{oxygen}$

 \rightarrow Consistent with $\left(\sigma_{\text{NCQE}}^{\text{theory}}\right) = 1.02 \times 10^{-38} \text{ cm}^2/\text{oxygen within the uncertainties}$

Systematic uncertainty is so large, why?

Comparison of secondary interaction models using atmospheric neutrinos

Systematic uncertainties

• Systematic uncertainty of secondary interaction is largest

	$N_{ m NCQE}^{ m exp}$	N _{NC non-QE}
Atmospheric neutrino flux	±18	.0%
Atmospheric neutrino/antineutrino ratio	±5.0%	
Cross section	-	±18.0%
Primary interaction	+1.5%/-9.4%	+0.0%/-2.4%
Secondary interaction	-30.9%	-24.3%
Energy cutoff	-2.1%	-1.5%
Data reduction	±1.4%	
Neutron tagging	±6.4%	

Why so large?

Secondary interaction models

• Intranuclear cascade process

Process of a chain of reactions triggered by a reaction between an incident particle and a nucleon in a nucleus

Evaporation process

Process of emitting nucleons and gamma rays isotropically when an excited residual nucleus deexcites

Secondary interaction models

• Available secondary interaction models

Bertini Cascade Model (BERT, SK official model)

Binary Cascade Model (BIC)

Liège Intranuclear Cascade Model (INCL++)

→ Evaporation process is so different

BERT \rightarrow Continuous transitions till the end

BIC, INCL++ \rightarrow Continuous to discrete transitions (more realistic)

Comparison of secondary interaction models

Compared the following distributions in BERT, BIC, and INCL++

Cherenkov angle of prompt signal \leftarrow Number of gamma rays Energy of prompt signal Number of delayed signals

- \leftarrow Energy of gamma rays
- \leftarrow Number of neutrons

Results

- Evaluated each distribution using chi-square
 - $\rightarrow\,$ Not conclusive due to small statistics
 - $\rightarrow \chi^2$ in BIC and INCL++ is smaller than that in BERT in all distributions
 - \rightarrow Suggested that BIC and INCL++ reproduce data better than BERT

Systematic uncertainty

Why systematic uncertainty of secondary interaction is large?

- Compared various secondary interaction models for the first time
 - \rightarrow Suggested that BIC and INCL++ reproduce data better than BERT
- Cannot determine which model is correct at this work
 - \rightarrow The difference in the number of events is taken as the systematic uncertainty

	BERT	BIC	INCL++
$N_{ m NCQE}^{ m exp}$	28.7	19.8 (-30.9%)	20.2 (–29.6%)
N ^{exp} _{NC non-QE}	13.3	10.2 (–23.2%)	10.1 (–24.3%)

Systematic uncertainty

- Number of events in Cherenkov angle of prompt signal (θ_c) \in [78, 90] degrees
 - \rightarrow BERT is ~2.2 σ far from data at this work

	Number of events $(\theta_{\rm C} \in [78, 90] \text{ degrees})$
Data	14
BERT	26.8
BIC	18.4
INCL++	18.9

Systematic uncertainty

- SK continues to observe at 0.03% Gd mass concentration (SK-VII)
- Evaporation model can be determined at 5σ by using ~4 years of data in SK-VII
 - \rightarrow Systematic uncertainty of NCQE cross section can be reduced

Summary

- Performed NCQE cross section measurement using a 552.2 day dataset in SK-Gd experiment (Gd: 0.011%)
 - $\rightarrow \langle \sigma_{\text{NCQE}}^{\text{measured}} \rangle = 0.74 \pm 0.22 (\text{stat.})_{-0.15}^{+0.85} (\text{syst.}) \times 10^{-38} \text{ cm}^2/\text{oxygen}$
 - \rightarrow Consistent with $\left(\sigma_{\text{NCQE}}^{\text{theory}}\right) = 1.02 \times 10^{-38} \text{ cm}^2/\text{oxygen}$
- Compared several secondary interaction models for the first time
 - $\rightarrow\,$ Suggested that BIC and INCL++ reproduce data better than BERT
- Evaporation model can be determined at 5σ by using ~4 years of data in SK-VII
 - \rightarrow Systematic uncertainty of NCQE cross section can be reduced

Super-Kamiokande (SK)

- Large water Cherenkov detector
- Started in 1996
- Consist of 50 kilotons ultrapure water and photomultiplier tubes (PMTs)

n: Refractive index $\beta = v/c$

$$n \sim 1.34$$

 $\beta \sim 1$
 $\rightarrow \theta_{\rm C} \sim 42$ degrees

Supernova neutrino observation

• Supernova (SN)

Explosion caused by a star with more than 8 times the solar mass at the end of its life

 More than 99% of released energy is carried away by neutrinos

- Kamiokande, IMB, and Baksan observed neutrinos from SN1987A
 - \rightarrow Next neutrino observation is expected
- Rare in the vicinity where SN neutrinos are observable
 - \rightarrow SN neutrino observation is only SN1987A

Diffuse Supernova Neutrino Background

• Diffuse Supernova Neutrino Background (DSNB)

Superposition of neutrinos emitted from all past SNe

- \rightarrow Floating in space like background radiation
- → Small in number, but always potentially observable

Energy spectrum with time information

Diffuse Supernova Neutrino Background

• Diffuse Supernova Neutrino Background (DSNB)

Superposition of neutrinos emitted from all past SNe

• DSNB flux

 $\frac{d\Phi(E_{\nu})}{dE_{\nu}} = c \int_{0}^{z_{\text{max}}} \frac{dz}{H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}} \left[R_{\text{CCSN}}(z) \int_{0}^{z_{\text{max}}} \psi_{\text{ZF}}(z,Z) \left\{ \int_{M_{\text{min}}}^{M_{\text{max}}} \psi_{\text{IMF}}(M) \frac{dN(M,Z,E_{\nu}')}{dE_{\nu}'} dM \right\} dZ \right]$

- → Depend on SN rate, metallicity, initial mass function,
 Number of neutrinos generated by SN, etc.
- There is a range of one order of magnitude on theoretical predictions of DSNB flux
 - → DSNB observation would contribute to our understanding of SN mechanism and star formation

Supernova rate

- Lifetime of a massive star occurring supernova is short enough compared to the time scale of the evolution of the universe
 - \rightarrow Star formation and supernova can be approximated as the same time
 - \rightarrow Should be possible to predict the supernova rate from the star formation rate
- Rate obtained from optical observations is about half of that predicted from the star formation rate
 - \rightarrow Dark supernovae?
 - Is there light-blocking material?
- Can understand the star formation rate, supernova rate, and supernova mechanism from DSNB energy spectra

Thermal neutron capture cross sections

Table 1. Relative abundances of gadolinium isotopes in natural gadolinium [20] and their radiative thermal neutron capture cross sections [1].

Isotope	Abundance [%]	Cross section [b]
¹⁵² Gd	0.200	735
¹⁵⁴ Gd	2.18	85
¹⁵⁵ Gd	14.80	60 900
¹⁵⁶ Gd	20.47	1.8
¹⁵⁷ Gd	15.65	254 000
¹⁵⁸ Gd	24.84	2.2
¹⁶⁰ Gd	21.86	1.4

Neutron capture rate

Total energy of gamma rays

Neutron capture time constant

DSNB search in SK experiment

- Search for the inverse beta decay by electron antineutrinos ($\bar{\nu}_e + p \rightarrow e^+ + n$)
 - \rightarrow Cross section is 1-2 orders of magnitude larger than others at < 30 MeV
- Detect positron (prompt signal) and neutron (delayed signal) pairs
 - \rightarrow Can remove backgrounds without neutrons
- So far, delayed signal was 2.2 MeV gamma ray by neutron capture on proton
 - \rightarrow Neutron detection efficiency was low (~20%)

DSNB flux upper limits

NCQE reaction

- Neutral-current quasielastic scattering (NCQE) reaction
 - \rightarrow Neutrino ($O(10^2) O(10^4)$ MeV) knocks out a nucleon in a nucleus

NCQE reaction on oxygen

- ¹⁶O has three states ($p_{1/2}$, $p_{3/2}$, and $s_{1/2}$)
- $p_{1/2}$ state is knocked out
 - \rightarrow Residual nucleus: ¹⁵N or ¹⁵O (ground state)
 - \rightarrow No particle is generated
- $p_{3/2}$ or $s_{1/2}$ state is knocked out
 - \rightarrow Residual nucleus: ¹⁵N or ¹⁵O (excited state)
 - \rightarrow Gamma rays and nucleons are generated

NCQE cross section measurement in SK

Measured NCQE cross section using atmospheric neutrinos

 $\rightarrow \langle \sigma_{\text{NCQE}}^{\text{measured}} \rangle = 1.01 \pm 0.17 (\text{stat.})_{-0.30}^{+0.78} (\text{syst.}) \times 10^{-38} \text{ cm}^2 / \text{oxygen}^*$

- Only one secondary interaction model was available
- Delayed signal: 2.2 MeV gamma ray by neutron capture on proton
 - \rightarrow Neutron detection efficiency was low (~20%)

* L. Wan et al. (SK Collaboration), Phys. Rev. D 99, 032005 (2019)

NCQE cross section measurement in T2K

• Measured NCQE cross section using accelerator neutrinos $\rightarrow \langle \sigma_{\nu-\text{NCQE}}^{\text{measured}} \rangle = 1.70 \pm 0.17(\text{stat.})^{+0.51}_{-0.38}(\text{syst.}) \times 10^{-38} \text{ cm}^2/\text{oxygen}^*$ $\rightarrow \langle \sigma_{\overline{\nu}-\text{NCQE}}^{\text{measured}} \rangle = 0.98 \pm 0.16(\text{stat.})^{+0.26}_{-0.19}(\text{syst.}) \times 10^{-38} \text{ cm}^2/\text{oxygen}^*$

* K. Abe et al. (T2K Collaboration), Phys. Rev. D 100, 112009 (2019)

Backgrounds

Decays of radioactive isotopes by muon nuclear spallation (Spallation events)

- Lithium-9 (⁹Li)
 - \rightarrow High rate and long half-life

End-point energy [MeV]

Backgrounds

Atmospheric neutrino charged-current (CC) reactions (CC events)

- Electron or muon (prompt signal) and neutron (delayed signal) are generated
- Muon energy is below Cherenkov threshold
 - \rightarrow Decay electron is generated
 - \rightarrow Electron-neutron pair

Backgrounds

Atmospheric neutrino NC single meson production

- Similar to NCQE events
 - \rightarrow Remains a lot even after event selection

Reactor neutrinos (Reactor events)

- IBD same as DSNB
- · Low energy and little effect on this analysis

Accidental events

- Accidentally electron-neutron pair is formed
- Mostly nuclear spallation events without neutrons and neutron misidentification events

Number of events

- 38 events remained after event selection
- $N_{\rm NCQE}^{\rm exp}$ is different largely among secondary interaction models

	BERT	BIC	INCL++
N ^{obs}		38	
$N_{ m NCQE}^{ m exp}$	28.7	19.8	20.2
N ^{exp} _{NC non-QE}	13.3	10.2	10.1
$N_{\rm CC}^{\rm exp}$	1.4	1.1	1.2
$N_{ m Spallation}^{ m exp}$	0.9	0.9	0.9
$N_{ m Reactor}^{ m exp}$	0.1	0.1	0.1
$N_{ m Accidental}^{ m exp}$	1.6	1.6	1.6

Systematic uncertainties

- $N_{\text{spallation}}^{\text{exp}}$: 60.0% \leftarrow From DSNB analysis
- $N_{\text{Reactor}}^{\exp}$: 100.0% \leftarrow From DSNB analysis
- $N_{\text{Accidental}}^{\text{exp}} = \epsilon_{\text{mis}} \times N_{\text{pre-ntag}}^{\text{obs}}$: 4.6% \leftarrow From systematic uncertainty of ϵ_{mis} and

statistical uncertainty of $N_{\text{pre-ntag}}^{\text{obs}}$ (= 5,447)

	$N_{\rm CC}^{\rm exp}$
Atmospheric neutrino flux	±18.0%
Atmospheric neutrino/antineutrino ratio	±5.0%
Cross section	±24.0%
Primary interaction	+1.2%/-8.0%
Secondary interaction	-20.7%
Energy cutoff	-19.9%
Data reduction	±1.4%
Neutron tagging	±6.4%

Systematic error of NCQE cross section

• Determine systematic uncertainty of

 $\langle \sigma_{\text{NCQE}}^{\text{measured}} \rangle = \frac{N^{\text{obs}} - N_{\text{NC non-QE}}^{\text{exp}} - N_{\text{Others}}^{\text{exp}}}{N_{\text{NCQE}}^{\text{exp}}} \times \langle \sigma_{\text{NCQE}}^{\text{theory}} \rangle \text{ using toy MC}$

- 1. Determine $N_{\text{NCQE}}^{\text{exp}}$, $N_{\text{NC non-QE}}^{\text{exp}}$, and $N_{\text{Others}}^{\text{exp}}$ according to each uncertainty
- 2. Calculate $\langle \sigma_{\text{NCQE}}^{\text{measured}} \rangle$ to plot
- 3. Repeat procedures above 1 million times
- 4. Range of 1σ from

 $\langle \sigma_{\rm NCQE}^{\rm measured} \rangle = 0.74 \times 10^{-38} \ {\rm cm}^2 / {\rm oxygen}$

is the systematic uncertainty

• $\langle \sigma_{\text{NCQE}}^{\text{measured}} \rangle = 0.74 \pm 0.22(\text{stat.})_{-0.15}^{+0.85}(\text{syst.}) \times 10^{-38} \text{ cm}^2/\text{oxygen}$

Secondary interaction models

- GEANT3-based SK detector simulation was used in previous study*
- Geant4-based SK detector simulation was developed
 - \rightarrow Can compare various secondary interaction models

Bertini Cascade Model (BERT, SK official model)

Binary Cascade Model (BIC)

Liège Intranuclear Cascade Model (INCL++)

	Previous study*	This study
SK detector simulation	GEANT3-based	Geant4-based
BERT (SK official model)	0	0
BIC	×	0
INCL++	×	0

* L. Wan et al. (SK Collaboration), Phys. Rev. D 99, 032005 (2019)

Secondary interaction models

Differences

- Reaction point with nucleons in the nucleus
 - BERT \rightarrow Determined using mean free path
 - BIC, INCL++ \rightarrow Determined using closest approach distance

Differences

- Stopping time of intranuclear cascade process
 - BERT, BIC \rightarrow Stop when all (escapable) particles escape the nucleus
 - INCL++ \rightarrow Forced to stop at the following time (t_{stop})

$$t_{\rm stop} = 70 \ {\rm fm/c} \times \left(\frac{A}{208}\right)^{0.16}$$

• Nuclear model (nucleon density)

BERT \rightarrow Change discretely with distance from center of the nucleus BIC, INCL++ \rightarrow Change smoothly with distance from center of the nucleus

Condition for termination of the evaporation process

BERT \rightarrow End when excitation energy falls below 10^{-15} MeV

BIC, INCL++ \rightarrow End after continuous and discrete transitions

Number of gamma rays

- In BERT, the number of gamma rays per neutron inelastic scattering is large
- BIC and INCL++ show similar tendency

	Per neutron inelastic scattering
BERT	2.16
BIC	0.87
INCL++	0.89

Number of gamma rays

- In BERT, the number of gamma rays by neutron inelastic scattering per event is large
- BIC and INCL++ show similar tendency

	Per event
BERT	2.58
BIC	0.93
INCL++	0.92

Energy of gamma rays

- In BERT, there are many continuous components in addition to peaks of deexcitation gamma rays
- BIC and INCL++ show similar tendency

Number of neutron captures

- In BERT, the number of neutron captures per event is large
- BIC and INCL++ show similar tendency

	Per event
BERT	1.29
BIC	1.07
INCL++	1.06

Cherenkov angle of prompt signal

- What is the peak around 60 degrees?
 - \rightarrow No problem in reconstructed vertex and other variables
 - \rightarrow Concluded that it was a statistical fluctuation

Reconstructed vertex

• Events are uniformly distributed

• Calculate χ^2 using Poisson likelihood

$$\chi^{2} = 2 \sum_{i=1}^{\text{bin}} \left(N^{\exp, i} - N^{\text{obs}, i} + N^{\text{obs}, i} \ln \frac{N^{\text{obs}, i}}{N^{\exp, i}} \right)$$

- *N*^{obs} : The observed number of events
- N^{\exp} : The expected number of events
- $\rightarrow\,$ Not conclusive due to small statistics
- $\rightarrow \chi^2$ in BIC and INCL++ is smaller than that in BERT in all distributions

	$\chi^2/\mathrm{ndf}\left(\theta_\mathrm{C}\right)$	χ^2 /ndf ($E_{\rm vis}$)	$\chi^2/\mathrm{ndf}\left(N_{\mathrm{delayed}}\right)$
BERT	23.0 / 15	9.8 / 11	5.8 / 5
BIC	19.6 / 15	6.9 / 11	3.1 / 5
INCL++	19.8 / 15	6.8 / 11	2.8 / 5

χ^2/ndf

• p-value is larger (model is closer to data) as χ^2/ndf is smaller

Figure 40.2: The 'reduced' χ^2 , equal to χ^2/n , for *n* degrees of freedom. The curves show as a function of *n* the χ^2/n that corresponds to a given *p*-value.

Statistics

- SK continues to observe at 0.03% Gd mass concentration (SK-VII)
- Neutron tagging efficiency improved from 35.6% (Gd: 0.011%, SK-VI) to 63.0% (Gd: 0.03%, SK-VII)
 - \rightarrow Statistics increases by about 1.4 times with the same live time

References

- <u>1</u> S. Sakai *et al.*, Phys. Rev. D **109**, L011101 (2024)
- 2 J. F. Beacom and M. R. Vagins, Phys. Rev. Lett. **93**, 171101 (2004)
- Y. Koshio, "The supernovae neutrino detection in Super- and Hyper-Kamiokande", LPNHE, Paris, France (2023)
- <u>4</u> M. Harada *et al.*, Astrophys. J. Lett. **951**, L27 (2023)
- M. Harada, "Development of Neutron Tagging Algorithm and Search for Supernova Relic Neutrino in SK-Gd Experiment", Ph.D. Thesis, Okayama University (2023)
- 6 A. M. Ankowski *et al.*, Phys. Rev. Lett. **108**, 052505 (2012)
- 7 E. Richard et al., Phys. Rev. D 94, 052001 (2016)
- 8 Super-Kamiokande, "Gallery"
- <u>9</u> S. Ando, Astrophys. J. **607**, 20 (2004)
- 10 K. Abe et al., Phys. Rev. D 104, 122002 (2021)

References

- 11 S. Horiuchi *et al.*, Astrophys. J. **738**, 154 (2011)
- 12 T. Tanaka et al., Prog. Theor. Exp. Phys. 2020, 043D02 (2020)
- 13 M. Vagins, "A Gadolinium-loaded Super-Kamiokande", Neutrino 2022 (2022)
- 14 K. Abe et al., Nucl. Instrum. Methods Phys. Res., Sect. A 1027, 166248 (2022)
- <u>15</u> F. Nakanishi, "Developing a novel analysis method for supernova neutrino observations in Super-Kamiokande", Master's Thesis, Okayama University (2023)
- <u>16</u> L. Wan *et al.*, Phys. Rev. D **99**, 032005 (2019)
- <u>17</u> K. Abe *et al.*, Phys. Rev. D **100**, 112009 (2019)
- 18 R. L. Workman et al., Prog. Theor. Exp. Phys. 2022, 083C01 (2022)