Neutrino Emissivity through the Nucleon Bremsstrahlung from Nuclear Matter at Finite Temperature by the Cluster Variational Method

クラスター変分法を用いた有限温度核物質からの 核子制動放射によるニュートリノ放出率

> Waseda Univ. RCNP^A, and Numazu CT^B M. Takano, H. Togashi^A, and K. Sumiyoshi^B

Contents

1. Introduction

2. Cluster Variational Method and Togashi EOS

3. Application to Nucleon-Nucleon Bremsstrahlung4. Summary

2023/03/01 第10回超新星ニュートリノ研究会 岡山大学津島キャンパス理学部1号館大会議室

1. Introduction The aim of the study

An equation of state for supernova matter with the cluster variational method starting from bare nuclear forces (Togashi EOS) Nucl. Phys. A 961 (2017) 78

Nucleon effective masses

Correlation functions between nucleons

Application to the neutrino emissivity through the nucleon-nucleon bremsstrahlung (Weak rates that are consistent with the nuclear EOS)

An equation of state for numerical simulations of core-collapse supernovae based on the bare nuclear forces *)

H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, and M. Takano

An EOS table for supernova numerical simulations constructed with the cluster variational method based on the Argonne v18 two-body potential and the Urbana IX three-body potential

APR-EOS

Grid point

Parameter	Minimum	Maximum	Mesh	Number
$\log_{10}(T)$ [MeV]	-1.00	2.60	0.04	91 + 1
$Y_{ m p}$	0.00	0.65	0.01	66
$\log_{10}(\rho_{\rm B}) ~[{ m g/cm^3}]$	5.1	16.0	0.10	110

^{*)}H. Togashi et al., Nucl. Phys. A 961 (2017) 78.

The Nuclear Hamiltonian

TT TT . TT

$$H = H_2 + H_3$$
$$H_2 = -\sum_{i=1}^N \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i < j}^N V_{ij} , \quad H_3 = \sum_{i < j < k}^N V_{ijk}$$

 V_{ij} : The AV18 potential (isoscalar), V_{ijk} : The UIX potential

The AV18 two-body potential R. B. Wiringa et al., PRC 51 (1995) 38

$$V_{ij} = \sum_{t=0}^{1} \sum_{s=0}^{1} \left[V_{Cts}(r_{ij}) + V_{Tt}(r_{ij})S_{Tij} + V_{SOt}(r_{ij}) \left(s \cdot L_{ij} \right) \right]$$

Central Tensor Spin-orbit
$$+V_{qLts}(r_{ij}) \left| L_{ij} \right|^{2} + V_{qSOt}(r_{ij}) \left(s \cdot L_{ij} \right)^{2} \right] P_{tsij} + V_{corr}$$

Quadratic orbital Quadratic t: isospin, s: spin
angular momentum spin-orbit
NN scattering data are well reproduced

Jastrow Trial Wave Function

$$\Psi(x_1, \cdots, x_N) = \operatorname{Sym}\left[\prod_{i < j} f_{ij}\right] \Phi_{\mathrm{F}}(x_1, \cdots, x_N)$$

$$f_{ij} = \sum_{t=0}^{1} \sum_{\mu} \sum_{s=0}^{1} \left[f_{Cts}^{\mu}(r_{ij}) + s f_{Tt}^{\mu}(r_{ij}) S_{Tij} + s f_{SOt}^{\mu}(r_{ij}) \left(\boldsymbol{s} \cdot \boldsymbol{L}_{ij} \right) \right] P_{tsij}^{\mu}$$

- f_{Cts}^{μ} : Central correlation function
- $f_{\mathrm{T}t}^{\mu}$: Tensor correlation function
- f_{SOt}^{μ} : Spin-orbit correlation function

 P_{tsij}^{μ} : Spin-isospin projection operater

s : spin μ = (+, 0, -) for (p-p, p-n, n-n) pairs (*t* =1)

t : isospin

Cluster Variational Method

The expectation value of the Hamiltonian per nucleon Cluster expansion

$$\frac{\langle H_2 \rangle}{N} = \frac{1}{N} \frac{\langle \Psi | H_2 | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle H_2 \rangle_2}{N} + \frac{\langle H_2 \rangle_3}{N} + \dots$$

Two-body cluster approximation

$$\langle H_2 \rangle_2 / N$$
: Two-body cluster term
 $\langle H_2 \rangle_3 / N$: Three-body cluster term
Higher order cluster terms
The FHNC methd
(APR, AM)
 $\frac{E_2}{N} = \frac{\langle H_2 \rangle_2}{N} [f^{\mu}_{Cts}(r), f^{\mu}_{Tt}(r), f^{\mu}_{SOt}(r)]$

 $f_{Cts}^{\mu}(r), f_{Tt}^{\mu}(r), f_{SOt}^{\mu}(r)$ Euler-Lagrange equations \longrightarrow Minimized energy

→ Minimized energies per nucleon

$$\frac{\langle H_2 \rangle}{N} \quad \text{in the two-body cluster approximation}$$

$$\frac{E_2}{N} = E_{\rm F}(x) + 2\pi\rho \sum_{t=0}^1 \sum_{\mu} \sum_{s=0}^1 \int \left[F_{ts}^{\mu}(r)V_{\rm Cts}(r) + sF_{\rm Tt}^{\mu}(r)V_{\rm Tt}(r) + sF_{\rm SOt}^{\mu}(r)V_{\rm SOt}(r) + F_{\rm qLts}^{\mu}(r)V_{\rm qLts}(r) + sF_{\rm qSOt}^{\mu}(r)V_{\rm qSOt}(r)\right]r^2dr$$

$$+ \frac{2\pi\hbar^2\rho}{m} \sum_{t=0}^1 \sum_{\mu} \sum_{s=0}^1 \int \left[\left\{\left[\frac{df_{\rm Cts}^{\mu}(r)}{dr}\right]^2 + 8s\left[\frac{df_{\rm Tt}^{\mu}(r)}{dr}\right]^2 + 48s\left[\frac{f_{\rm Tt}^{\mu}(r)}{r}\right]^2\right\}F_{\rm Fts}^{\mu}(r) + \frac{2}{3}s\left[\frac{df_{\rm SOt}^{\mu}(r)}{dr}\right]^2F_{\rm qFt}^{\mu}(r)\right]r^2dr$$

$$\begin{split} F_{ts}^{\mu}(r) &= \left[f_{Cts}^{\mu}(r)\right]^{2} F_{Fts}^{\mu}(r) + 8s \left[f_{Tt}^{\mu}(r)\right]^{2} F_{Ft1}^{\mu}(r) + \frac{2}{3}s \left[f_{SOt}^{\mu}(r)\right]^{2} F_{qFt1}^{\mu}(r) \\ F_{Tt}^{\mu}(r) &= 16 \left\{f_{Ct1}^{\mu}(r)f_{Tt}^{\mu}(r) - \left[f_{Tt}^{\mu}(r)\right]^{2}\right\} F_{Ft1}^{\mu}(r) - \frac{2}{3}s \left[f_{SOt}^{\mu}(r)\right]^{2} F_{qFt1}^{\mu}(r) \\ F_{SOt}^{\mu}(r) &= -24 \left[f_{Tt}^{\mu}(r)\right]^{2} F_{Ft1}^{\mu}(r) + \frac{4}{3} \left\{f_{Ct1}^{\mu}(r) - \frac{1}{4}f_{SOt}^{\mu}(r) - f_{Tt}^{\mu}(r)\right\} f_{SOt}^{\mu}(r) F_{qFt1}^{\mu}(r) \\ F_{qLts}^{\mu}(r) &= \left[f_{Cts}^{\mu}(r)\right]^{2} F_{qFts}^{\mu}(r) + 8s \left[f_{Tt}^{\mu}(r)\right]^{2} \left[6F_{Ft1}^{\mu}(r) + F_{qFts}^{\mu}(r)\right] + \frac{2}{3}s \left[f_{SOt}^{\mu}(r)\right]^{2} F_{bFt1}^{\mu}(r) \\ F_{qSOt}^{\mu}(r) &= \frac{2}{3} \left[f_{Ct1}^{\mu}(r)\right]^{2} F_{qFt1}^{\mu}(r) - \frac{2}{3} f_{Ct1}^{\mu}(r) \left[2f_{Tt}^{\mu}(r) + f_{SOt}^{\mu}(r)\right] F_{qFt1}^{\mu}(r) \\ + 8s \left[f_{Tt}^{\mu}(r)\right]^{2} \left[72F_{Ft1}^{\mu}(r) + \frac{20}{3}F_{qFt1}^{\mu}(r)\right] + \frac{8}{3} f_{Tt}^{\mu}(r) f_{SOt}^{\mu}(r) F_{qFt1}^{\mu}(r) + \frac{2}{3}s \left[f_{SOt}^{\mu}(r)\right]^{2} F_{bFt1}^{\mu}(r) \end{split}$$

Two Constraints for the Variational Calculation

1. Mayer Condition (Nucleon number conservation)

$$4\pi\rho \int_0^\infty \left[F_{ts}^{\mu}(r) - F_{Fts}^{\mu}(r)\right] r^2 dr = 0$$

2. Healing distance: $r_{\rm h}$

$$f_{\text{Cts}}^{\mu}(r) = 1, \ f_{\text{Tt}}^{\mu}(r) = 0, \ f_{\text{SOt}}^{\mu}(r) = 0 \quad (r > r_{\text{h}})$$

$$r_{\rm h} = a_{\rm h} r_0$$
 $\frac{4\pi r_0^3}{3} = \frac{1}{\rho}$

 $a_{\rm h}$: Adjustable parameter

The value of ah is chosen so as to reproduce the result for symmetric nuclear matter by APR (FHNC).

 E_2/N : Two-body energy

The three-body energy

UIX potential $V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{R}$ $V_{ijk}^{2\pi} : 2\pi$ exchange term Expectation values with the non-interacting FG-WF. V_{ijk}^{R} : Repulsive term

$$\frac{E_3^{2\pi}}{N} = \frac{1}{N} \sum_{i < j < k}^{N} \left\langle V_{ijk}^{2\pi} \right\rangle_{\mathrm{F}} \qquad \frac{E_3^{\mathrm{R}}}{N} = \frac{1}{N} \sum_{i < j < k}^{N} \left\langle V_{ijk}^{\mathrm{R}} \right\rangle_{\mathrm{F}}$$

The energy caused by the three-body nuclear force

$$\frac{E_3}{N}(x) = \alpha \frac{E_3^R}{N}(x) + \beta \frac{E_3^{2\pi}}{N}(x) + \gamma \rho^2 e^{-\rho\delta} \left[1 - (1 - 2x)^2\right]$$
Total energy $\frac{E}{N} = \frac{E_2}{N} + \frac{E_3}{N}$ The correction term
x: proton fraction
Parameters: $\alpha, \beta, \gamma, \delta$
Chosen so as to reproduce the empirical saturation point

 $\alpha = 0.43, \beta = -0.34, \gamma = -1804 \text{ MeV fm}^{\circ}, \delta = 14.62 \text{ fm}^{\circ}$

Energy of asymmetric nuclear matter at zero temeprature

Uniform Nuclear Matter at Finite Temperatures

K. E. Schmidt and V. R. Pandharipande: Phys. Lett. 87B(1979) 11.

Free energy
$$\frac{F}{N} = \frac{E_0}{N} - T\frac{S_0}{N}$$

 E_0/N : Internal energy S_0/N : Entropy

 E_2/N : In E_2/N at zero temperature, occupation probabilities of single-nucleon states are replaced by the averaged occupation probabilities $n_i(k)$ at the temperature *T*.

Averaged occupation probabilities: $n_i(k)$ E_3/N : Thermal effects are ignored $n_i(k) = \left\{1 + \exp\left[\left[\frac{e_i(k) - \mu_i}{k_BT}\right]\right\}^{-1}, e_i(k) = \frac{\hbar^2 k^2}{2m_i^*} \leftarrow \text{Effective mass}$ (i = p, n)

$$\frac{S_0}{N} = -\frac{k_B}{N} \sum_{i=p, n} \sum_j \left\{ \left[1 - n_i(k_j) \right] \ln \left[1 - n_i(k_j) \right] + n_i(k_j) \ln \left[n_i(k_j) \right] \right\}$$

Free energy is minimized with respect to $m_{\rm p}^*$ and $m_{\rm n}^*$

Free energy of asymmetric nuclear matter

H. Togashi et al., Nucl. Phys. A902 (2013) 53.

Phase Diagram of Nuclear Matter

H. Togashi et al., Nucl. Phys. A961 (2017)78

3. Application to Bremsstrahlung

O. V. Maxwell, Astrophys. J. 316 (1987) 691.B. L. Friman and O. V. Maxwell, Astrophys. J. 232 (1979)451.

Friman & Maxwell(1979)

Emissivity

$$\epsilon_{\nu\bar{\nu}}^{NN} = \frac{1}{\hbar} \int \prod_{i=1}^{4} \frac{d^{3}p_{i}}{(2\pi)^{3}} \frac{d^{3}q_{1}}{(2\pi)^{3}2\omega_{1}} \frac{d^{3}q_{2}}{(2\pi)^{3}2\omega_{2}} (2\pi)\delta(E_{\rm f} - E_{\rm i})(2\pi)^{3}\delta(\mathbf{P}_{\rm f} - \mathbf{P}_{\rm i}) (\omega_{1} + \omega_{2})n_{1}n_{1}(1 - n_{3})(1 - n_{4})S \sum_{\rm spins} \left| M^{NN}(\mathbf{k}, \mathbf{k}') \right|^{2} \left| M^{NN}(\mathbf{k}, \mathbf{k}') \right|^{2} = 128 \frac{G_{\rm F}^{2}}{2} \left(\frac{f_{\pi}}{m_{\pi}} \right)^{4} F^{NN}(\mathbf{k}, \mathbf{k}') \qquad \mathbf{k} = \mathbf{p}_{1} - \mathbf{p}_{3} \quad \mathbf{k}' = \mathbf{p}_{1} - \mathbf{p}_{4}$$

 \mathbf{spins}

$$F^{\rm nn}(\mathbf{k},\mathbf{k}') = \left(\frac{k^2}{k^2 + m_\pi^2}\right)^2 + \left(\frac{k'^2}{k'^2 + m_\pi^2}\right)^2 + \frac{1}{(k^2 + m_\pi^2)(k'^2 + m_\pi^2)} \left[k^2k'^2 - 3(\mathbf{k}\cdot\mathbf{k}')^2\right]$$
$$F^{\rm np}(\mathbf{k},\mathbf{k}') = \left(\frac{k^2}{k^2 + m_\pi^2}\right)^2 - 2\left(\frac{k'^2}{k'^2 + m_\pi^2}\right)^2 - \frac{2}{(k^2 + m_\pi^2)(k'^2 + m_\pi^2)} \left[k^2k'^2 - (\mathbf{k}\cdot\mathbf{k}')^2\right]$$

Degenerate Limit

Emissivity

$$\epsilon_{\nu\bar{\nu}}^{nn} = \frac{G_{\rm F}^2}{4\pi S} \left(\frac{f_{\pi}}{m_{\pi}}\right)^4 \frac{82}{14175} (k_{\rm B}T)^8 (m_n^*)^4 \left[2J_1(2k_{\rm Fn},0) + J_2(k_{\rm Fn},0)\right]$$

$$\epsilon_{\nu\bar{\nu}}^{np} = \frac{G_{\rm F}^2}{32\pi} \left(\frac{f_{\pi}}{m_{\pi}}\right)^4 \frac{82}{14175} (k_{\rm B}T)^8 (m_n^* m_p^*)^2 \left[J_1(2k_{\rm Fp},0) + J_1(k_{\rm Fn} + k_{\rm Fp},|k_{\rm Fn} - k_{\rm Fp}|) - J_2(2k_{\rm Fp},0)\right]$$

$$J_1(k_2, k_1) = \int_{k_1}^{k_2} \left(\frac{k^2}{k^2 + m_\pi^2}\right)^2 dk \quad J_2(k_2, k_1) = \int_{k_1}^{k_2} \frac{k^2}{k^2 + m_\pi^2} \left(1 - \frac{m_\pi^2}{\sqrt{a^2 - b^2}}\right) dk$$

$$a = 2p_{Fn}^2 - k^2 + m_{\pi}^2 - 2p_{Fn}^2 \cos\theta_1 \cos\theta_2 \qquad b = p_{Fn}^2 \sin\theta_1 \sin\theta_2$$
$$\cos\theta_1 = \frac{k}{2p_{Fn}} \qquad \qquad \cos\theta_2 = -\frac{k}{2p_{Fn}}$$

Interaction rate
$$\Phi^{NN}(\omega)$$

 $\epsilon_{\nu\bar{\nu}}^{NN} = \frac{1}{2} (4\pi)^2 \frac{1}{30} \int_0^\infty \Phi^{NN}(\omega) \exp\left(-\frac{\omega}{k_{\rm B}T}\right) \omega^6 d\omega$

Degenerate Limit

c.f., H. Suzuki, Int. Symp. Neutrino Astrophys. (1993) p219.

$$\phi(\omega) = \frac{1}{6\pi^9} c(\hbar c)^2 \left[\frac{G_F}{(\hbar c)^3} \right]^2 g_A^2 \left(\frac{f_\pi^2}{4\pi} \right)^2 \left(\frac{1}{m_\pi c^2} \right)^4 (m_N c^2)^4 k_B T \left\{ 4\pi^2 \frac{k_B T}{\omega} + \left(\frac{\omega}{k_B T} \right) \right\} \frac{1}{1 - exp(-\frac{\omega}{k_B T})} C_{NN}$$

Non-Degenerate Limit

$$\Phi^{nn}(\omega) = \frac{1}{8\pi^{11/2}} G_{\rm F}^2 g_{\rm A}^2 \left(\frac{f_{\pi}}{m_{\pi}}\right)^4 \frac{1}{(4\pi)^2} \left(\frac{m_{\rm n}^*}{k_{\rm B}T}\right)^{3/2} n_{\rm B}^2 (1-Y_{\rm p})^2 \exp\left(\frac{\omega}{2k_{\rm B}T}\right) \int_1^\infty \exp\left(-\frac{\omega t}{2k_{\rm B}T}\right) \sqrt{t^2 - 1} F_{nn}(t) dt$$
$$F_{nn}(t) = 3 + \frac{2\alpha_n^2}{1 + \alpha_n^2 + 2\alpha_n t} + \frac{1}{2} \frac{5\alpha_n^2 + 6\alpha_n t + 3}{(\alpha_n + t)\sqrt{t^2 - 1}} \ln\left(\frac{\alpha_n + t - \sqrt{t^2 - 1}}{\alpha_n + t + \sqrt{t^2 - 1}}\right) \qquad \alpha_n = \frac{m_{\pi}^2}{m_n^* \omega}$$

$$\Phi^{np}(\omega) = \frac{1}{2\pi^{11/2}} G_{\rm F}^2 g_{\rm A}^2 \left(\frac{f_{\pi}}{m_{\pi}}\right)^4 \frac{1}{(4\pi)^2} \left(\frac{2m_{\rm n}^* m_{\rm p}^*}{m_{\rm n}^* + m_{\rm p}^*} \frac{1}{k_{\rm B}T}\right)^{3/2} n_{\rm B}^2 (1-Y_{\rm p}) Y_{\rm p} \exp\left(\frac{\omega}{2k_{\rm B}T}\right) \int_1^\infty \exp\left(-\frac{\omega t}{2k_{\rm B}T}\right) \sqrt{t^2 - 1} F_{np}(t) dt$$

$$F_{np}(t) = 1 + \frac{3\alpha_{np}^2}{1 + \alpha_{np}^2 + 2\alpha_{np}t} + \frac{2\alpha_{np}^2 + \alpha_{np}t - 1}{(\alpha_{np} + t)\sqrt{t^2 - 1}} \ln\left(\frac{\alpha_{np} + t - \sqrt{t^2 - 1}}{\alpha_{np} + t + \sqrt{t^2 - 1}}\right) \qquad \alpha_{np} = \frac{m_{\pi}^2}{\frac{2m_{n}^* m_{p}^*}{m_{n}^* + m_{p}^*}\omega}$$

3. Application to Bremsstrahlung

O. V. Maxwell, Astrophys. J. 316 (1987) 691. B. L. Friman and O. V. Maxwell, Astrophys. J. 232 (1979)451.

N-N interaction: One Pion Exchange (OPE) $(f_{1})^{2}$ $(\sigma_{1}, \mathbf{k})(\sigma_{2}, \mathbf{k})$

$$V_{12}(\mathbf{k}) = -\left(\frac{f}{m_{\pi}}\right)^2 (\tau_1 \cdot \tau_2) \frac{(\sigma_1 \cdot \mathbf{k})(\sigma_2 \cdot \mathbf{k})}{k^2 + m_{\pi}^2}$$

Replaced by the two-body cluster approximation of the long-range part of the AV18 potential (OPEP)

Effects of the nuclear correlations are included in f_{π} and m_{π}

Introduction of the effective OPE potential

$$V_{ij}^{\text{OPE}}(f, m_{\pi}) = f^{2}(\boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}) \left[(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}) V_{\text{c}}(m_{\pi} r_{ij}) + S_{\text{T}ij} V_{\text{T}}(m_{\pi} r_{ij}) \right]$$
$$V_{\text{c}}(x) = \frac{e^{-x}}{x} \qquad V_{\text{T}}(x) = (1 + \frac{3}{x} + \frac{3}{x^{2}}) \frac{e^{-x}}{x}$$

For $\nu = (pp, pn, nn), (f_{\nu}^*, m_{\pi\nu}^*)$ are introduced as follows:

$$\frac{\langle V^{\text{OPE}} \rangle}{N} = \sum_{\nu} \int \cdots \int dx_1 \cdots dx_N \Psi^{\dagger}(x_1, \cdots, x_N) \sum_{i>j} V_{ij}^{\text{OPE}}(f, m_{\pi}) P_{\nu ij} \Psi(x_1, \cdots, x_N)$$
$$= \sum_{\nu} \int \cdots \int dx_1 \cdots dx_N \Phi_{\text{F}}^{\dagger}(x_1, \cdots, x_N) \sum_{i>j} g_{ij}^{\nu} V_{ij}^{\text{OPE}}(f, m_{\pi}) P_{\nu ij} \Phi_{\text{F}}(x_1, \cdots, x_N)$$
$$= \sum_{\nu} \int \cdots \int dx_1 \cdots dx_N \Phi_{\text{F}}^{\dagger}(x_1, \cdots, x_N) \sum_{i>j} V_{ij}^{\text{OPE}}(f_{\nu}^*, m_{\pi\nu}^*) P_{\nu ij} \Phi_{\text{F}}(x_1, \cdots, x_N)$$

 $\Psi(x_1, \cdots, x_N)$: WF of uniform nuclear matter

 $\Phi_{\rm F}(x_1, \cdots, x_N)$: WF of non-interacting Fermi gas

 $P_{\nu ij}$: Projection operator with respect to $\nu = (pp, pn, nn)$

Introduction of the effective OPE potential

The two-body cluster approximation

$$\begin{split} & \frac{\langle V^{\text{OPE}} \rangle}{N} = 2\pi\rho \sum_{t=0}^{1} \sum_{\mu} \sum_{s=0}^{1} \int_{0}^{\infty} r^{2} dr \left[F_{ts}^{\mu}(r) V_{\text{C}ts}^{\text{OPE}}(r) + sF_{\text{T}t}^{\mu}(r) V_{\text{T}t}^{\text{OPE}}(r) \right] \\ & F_{ts}^{\mu}(r) = \left\{ \left[f_{\text{C}ts}^{\mu}(r) \right]^{2} + 8s \left[f_{\text{T}t}^{\mu}(r) \right]^{2} \right\} F_{\text{F}ts}^{\mu}(r) + \frac{2}{3}s \left[f_{\text{SOt}}^{\mu}(r) \right]^{2} F_{\text{qF}ts}^{\mu}(r), \\ & F_{\text{T}t}^{\mu}(r) = 16f_{\text{T}t}^{\mu}(r) \left[f_{\text{C}t1}^{\mu}(r) - f_{\text{T}t}^{\mu}(r) \right] F_{\text{F}t1}^{\mu}(r) - \frac{2}{3}s \left[f_{\text{SOt}}^{\mu}(r) \right]^{2} F_{\text{qF}t1}^{\mu}(r), \\ & F_{\text{F}ts}^{\mu}(r_{12}) \equiv \Omega^{2} \sum_{\text{isospin spin}} \int \Phi_{\text{F}}^{\dagger} P_{ts12}^{\mu} \Phi_{\text{F}} dr_{3} dr_{4} \cdots dr_{N} \\ & = \frac{2s+1}{4} \left\{ \xi_{i}\xi_{j} - (-1)^{t+s} l_{i}(r_{12}) l_{j}(r_{12}) \right\}, \\ & F_{\text{qF}ts}^{\mu}(r_{12}) \equiv \Omega^{2} \sum_{\text{isospin spin}} \int \Phi_{\text{F}}^{\dagger} |L_{12}|^{2} P_{ts12}^{\mu} \Phi_{\text{F}} dr_{3} dr_{4} \cdots dr_{N} \\ & = \frac{2s+1}{4} \left\{ \frac{r_{12}^{2}}{10} \xi_{i}\xi_{j} (k_{\text{F}i}^{2} + k_{\text{F}j}^{2}) - (-1)^{t+s} \frac{r_{12}}{2} \left[l_{i}(r_{12}) \frac{dl_{j}(r_{12})}{dr_{12}} + l_{j}(r_{12}) \frac{dl_{i}(r_{12})}{dr_{12}} \right] \right\}, \end{split}$$

Interaction Rate

Emissivity

Pion effective coupling constant and effective mass

Nucleon Effective Mass

Summary

The correlation between nucleons and nucleon effective masses obtained through the cluster variational calculations are applied to neutrino emissivity by nucleon-nucleon bremsstrahlung.

The interaction rates are calculated in the degenerate limit and nondegenerate limit.

Future Plans

Analytic fitting formula will be prepared for numerical simulations of core-collapse supernovae.

Weak rates that are consistent with nuclear equation of state.