ニュートリノ中性カレント反応理解のための 中性子・酸素原子核反応に関する研究

Study of neutron-oxygen reaction for understanding neutral current interaction

Okayama Univ. Tomohiro Tano

Outline

- 1. Introduction
- 2. Measurement of neutron-oxygen reaction
- 3. Analysis
- 4. Discussion
- 5. Summary

SK-Gd experiment

Loading Gadolinium in SK

- Supernova Relic Neutrino (DSNB)
 - Integrated neutrino flux from all of supernova in the past
 - Star formation history
- DSNB search in Super-Kamiokande (SK)
 - Inverse beta decay (IBD) events

Neutral current quasi-elastic scattering by atmospheric neutrino is the largest background

Accidental coincidence

DSNB (Horiuchi+09 6-MeV, Maximum

28

E_{rec} [MeV]

26

NCQE interaction

- NCQE events cannot be distinguished from IBD
- The number of NCQE events is estimated by simulation
 - Systematic error : 68 82% (largest uncertainty)
- Measurement of NCQE interaction using T2K neutrino beam
 - Cherenkov angle distribution has differences
 b/w data and MC expected at large angle region
 - Caused by γ-rays from neutron-¹⁶O interaction (described in the next page)

4

Neutron-¹⁶O interaction

- Primary γ : γ -rays from NCQE
- Secondary γ : γ -rays from neutron emitted by NCQE with oxygen nucleus
- Primary and secondary γ -rays are detected as one Cherenkov ring \rightarrow Reconstructed Cherenkov angle is lar
 - \rightarrow Reconstructed Cherenkov angle is large
- Neutron interaction with oxygen are poorly understood and the cause of uncertainty

It is important to understand neutron-¹⁶O reaction

Neutrons emitted by NCQE

- Energies of neutrons emitted by NCQE are $\mathcal{O}(10^1) \sim \mathcal{O}(10^2)$ MeV
- We measured neutron interaction with ¹⁶O at 30, 80, 250 MeV for covering this energy range

Experiment @Research Center for Nuclear Physics

 Neutrons were made incident on water target and interacts with ¹⁶O 	Energy	Neutron detector	Gamma-rays Detector
	30 MeV	LqS	HPGe
• γ -rays produced by neutron- ¹⁶ O	80 MeV	LqS	LaBr ₃
reaction were measured	250 MeV	LqS	HPGe
E487 (80 MeV) me of flight Mar., 2017eV 15.0 m E525 (30, 250 MeV) : Oct. and Dec., 20 The result of E487 > Y. Ashida <i>et al</i> , Phys. Rev. Cecondary beam 109, 014620 (2024	1.5 m 4.5 m Columator	HPGe Nieweiter Nieweiter	Interview of the second

Cross section extraction

Neutron selection

• Neutron-like events are selected using Pulse Shape Discrimination (PSD)

- Waveforms of n-like events have longer tail, larger PSD parameter
- Cut criteria were determined for each energy region

Energy reconstruction

- Neutrons are generated by ⁷Li(p, n)⁷Be^{*}
- Flash gamma : γ-rays from Be*
- Neutron energy was calculated based on time difference b/w flash gamma and neutron

$$K = \frac{mc^2}{\sqrt{1 - \left(\frac{1}{1 + \frac{c}{L}}\Delta t\right)^2}} - mc^2$$

mc²: Neutron mass (939.6 MeV)

- : Distance from Li to water
- Δt : Time difference

Neutron flux

Gamma-rays analysis

Energy calibration

- Linearity was confirmed (< 1%)
- γ-rays peak from ¹⁶O (6.13 MeV) is seen in w/ water spectrum

Background subtraction

Signal spectrum

- γ -rays emitted by the interaction of 235-270 MeV neutrons with ¹⁶O
- This spectrum consists of γ -rays from ¹⁶O^{*}, ¹⁵N^{*}, ¹²C^{*} etc...
- Intensities of each γ -ray are extracted by spectrum fitting

Spectrum fitting

- The signal spectrum is expressed as a linear combination of individual γ -rays and continuous component
- Relative intensity of each gamma-rays are extracted by fitting

Reaction

Energy [MeV]	Nucleus (J ^π)	Process
2.30	$^{15}N(7/2^+)$	$^{16}O(n, np)^{15}N*$
2.74	¹⁶ O(2 ⁻)	${}^{16}O(n, n'){}^{16}O*$
3.68	$^{13}C(3/2^{-})$	${}^{16}O(n, \alpha){}^{13}C*$
4.44	$^{12}C(2^+)$	$^{16}O(n, n\alpha)^{12}C^*$ etc
4.91	$^{14}N(0^{-})$	$^{16}O(n,2np)^{14}N*$
5.10	$^{14}N(2^{-})$	$^{16}O(n,2np)^{14}N*$
5.18	$^{15}O(1/2^{+})$	$^{16}O(n,2n)^{15}O^*$ etc
5.27	$^{15}N(5/2^+)$	$^{16}O(n, np)^{15}N^*$ etc
6.13	¹⁶ O(3 ⁻)	$^{16}O(n, n')^{16}O*$
6.18	¹⁵ O(3/2 ⁻)	$^{16}O(n,2n)^{15}O^*$ etc
6.32	$^{15}N(3/2^{-})$	${}^{16}O(n, n'p){}^{15}N*$
6.92	$^{16}O(2^{+})$	${}^{16}O(n, n'){}^{16}O*$
7.12	¹⁶ O(1 ⁻)	$^{16}O(n, n')^{16}O*$

	Cross Se	ction	17
• 4.44	MeV iE ₇ /[MeV] intensity peaC	ross Section [mb]	– Continuous
2000 16	$(n, n')^{16}(2:30en \ {}^{16}O^* \rightarrow {}^{12}C^* + \alpha)$	0.82 ± 0.7 —	- 2.30 MeV
▶ 16 ($(n, n\alpha)^{12}$ (2.74	2.2 ± 0.9	<u>– 2.74</u> MeV
	3.68	4.1 ± 1.2	<u> </u>
mC]	4.44	37.5 ± 6.8	<u> </u>
	4.92	1.9 ± 1.2	<u> </u>
ount	5.10	< 0.11	- 5.18 MeV
	5.18	1.3 ± 0.9	5.27 MeV
	5.27	9.9 ± 1.9	6.13 MeV
10 ⁻²	6.13	22.3 ± 4.1	6 18 MeV
	6.18	4.6 ± 1.3	
10 ⁻³	6.32	12.9 ± 2.5	
	6.92	6.0 ± 1.5	
2000	3000 4000 5000 6000 7 7.12	$E 9.0 \pm 1.9$	

Fitting manual (250 Max) Cross Section

• 6.32 MeV iEth[MeV] intensity pealCross Section [mb]

Comparison with previous study

- The result of E525 (30, 250 MeV) is roughly consistent with R.O. Nelson et al. (2001).
- E487 (80 MeV) shows smaller cross section result than the other results.
 - Non-linearity of proton current measurement cause the underestimation for cross section

R.O. Nelson et al., Nucl. Sci. Eng. 138, 105 (2001)

Model	χ²/ndf @30 MeV	χ²/ndf @250 MeV
INCL++	1933.4 / 750	122.4 / 120
BIC	2405.5 / 750	133.0 / 120
BERT	4632.9 / 750	238.6 / 120

Summary

- It is important for SRN search to understand neutron-¹⁶O interaction
- We measured γ -rays produced from neutron-¹⁶O reaction using 30, 80 and 250 MeV neutron
- Data analysis
 - Neutron flux was estimated after particle identification and energy reconstruction
 - Relative intensity was obtained by spectrum fitting
 - Cross sections for each γ -rays were calculated
- Comparison with nucleon-nuclear interaction model was reported by Hino-san
 - ► INCL++ and BIC have the better agreement in both 30 and 250 MeV

Backup

解析の流れ

粒子弁別 (LqS)

 ・波形の違いを利用して中性子イベントを選別
 (Pulse Shape Discrimination)
 PSD parameter = Tail
 Total

 中性子イベントはテールが長くなる
 → PSD parameter が大きい

エネルギー領域毎に中性子と
 ガンマ線のカット条件を決定

エネルギー再構成 (LqS)

- ・ 即発ガンマ線:Be*の脱励起ガンマ線
- ・ LqSまで光速で飛来する → 中性子と飛来時間差 Δt が生じる
- ・ToF分布を作成
 - → 即発ガンマ線のピークと 中性子のピークを確認
- 下の式を用いてエネルギー再構成

$$K = \frac{mc^2}{\sqrt{1 - \left(\frac{1}{1 + \frac{c}{L}}\Delta t\right)^2}} - mc^2 \quad mc^2 : 中性子の質量 (939.6 MeV)$$

L : Liターゲットから水標的までの距離
Δt : 飛来時間の差

中性子フラックス (LqS)

- シミュレーションを用いて LqS の中性子検出効率を計算
- 中性子フラックスを算出
- ピーク領域は220 250 MeV

→ この領域の中性子を断面積計算に用いる

中性子フラックス

- 中性子フラックスを算出
- ピーク領域は220 250 MeV

→ この領域の中性子を断面積計算に用いる

10th Supernova Neutrino Workshop @Okayama Univ. Feb. 29 - Mar. 1st, 2024

LqS

エネルギーキャリブレーション (Ge)

⁶⁰ Co	1.17 MeV, 1.33 MeV
²⁴¹ Am/Be	4.44 MeV
⁵⁶ Fe	7.63 MeV + S.E. + D.E.
⁴⁰ K (環境)	1.46 MeV
¹ H (熱中性子捕獲)	2.22 MeV

- ・上記のガンマ線を用いて HPGe検出器のエネルギー キャリブレーションを行なった
- ・ 信号が予想される6 MeV付近を 含め、良い線形性を確認

Event selection and reconstruction

Event cut for neutron selection

Final presentation for master th Deposit energy [MeV]

- γ-rays from ⁷Be* enter the LqS before neutrons
- Energies of neutrons are calculated based on the time difference

背景事象の見積もり

- 信号事象: 220-250 MeV の中性子と水の反応によるガンマ線
- 主な背景事象
- ① ビームエネルギー領域外の中性子による反応 →ToFを用いたカット
- ② 熱中性子捕獲

→ Off-timing 領域のイベントを用いる

HPGe

31

ガンマ線スペクトル

- 以下のようなガンマ線スペクトルが得られた
- 1Hの熱中性子捕獲や16O由来のものなど、複数のピークが見られる
- このスペクトルから背景事象を差し引く

Timing 別のスペクトル

- w/water (on / off timing)、w/owater (on / off timing)の計4つの
 スペクトル図を作成
- これらの分布を利用して背景事象を差し引く

スペクトルフィッティング

フィッティングを行い、各ガンマ線の生成断面積を求める

Signal template

Background template

- ・ 水標的で散乱された中性子が
 周辺の物質と反応して <u></u>
 生じるガンマ線 <u></u>
- ・ 水なしランを用いて作成・ 指数関数を仮定

HPGe

34

これらの実験データを再現するようにモデルを修正
 →中性子・酸素原子核由来の不定性の削減

- 用意したテンプレートにパラメータを かけて足し合わせる
 → データを最もよく再現するパラメータ セットを求める
- 高エネルギー側から、
 光電吸収ピークを用いてχ²を計算

エネルギー	6.32 MeVに
[MeV]	対する強度
6.92	$2.96 {}^{+0.35}_{-0.44}$
6.32	$1.00 \stackrel{+0.37}{_{-0.37}}$
6.13	$2.23 \ ^{+0.60}_{-0.37}$
5.27	$2.35 \ ^{+0.63}_{-0.40}$
5.10	0.00 +0.33
4.91	0.63 +0.33 -0.33
4.44	2.08 +0.38 -0.29
3.84	0.00 +0.13
3.68	0.33 +0.15 -0.23
2.74	0.56 +0.27 -0.19

• 最も強いガンマ線: 6.92 MeV

▶ ¹⁶O(n, n')¹⁶O* 反応 ¹⁶O* の第三励起状態から放出される

• 各ガンマ線の生成断面積

エネルギー 6.32 MeVに [MeV] 対する強度 $2.96^{+0.35}_{-0.44}$ 6.92 $1.00 \stackrel{+0.37}{_{-0.37}}$ 6.32 $2.23 \stackrel{+0.60}{_{-0.37}}$ 6.13 $2.35 \stackrel{+0.63}{_{-0.40}}$ 5.27 0.00 +0.33 5.10 $0.63 \stackrel{+0.33}{_{-0.33}}$ 4.91 $2.08 \stackrel{+0.38}{_{-0.29}}$ 4.44 +0.130.00 3.84 $0.33 \stackrel{+0.15}{_{-0.23}}$ 3.68 $0.56 \stackrel{+0.27}{_{-0.19}}$ 2.74

6.13 MeV

10th Supernova Neutrino Workshop @Okayama Univ. Feb. 29 - Mar. 1st, 2024

まとめ

- 大気ニュートリノのNCQE反応は、SK-Gd実験でのSRN探索における 主要な背景事象の一つである
- 特に、NCQE反応後の中性子と酸素原子核の反応に由来する不定性が大きい
- 中性子・酸素原子核反応を測定するE525実験が行われた
- 現在、250 MeV実験のデータ解析を進めている
- 中性子フラックスを算出した後、ガンマ線スペクトルをフィッティングして
 各ガンマ線の強度を求めた
- フィッティングの結果、最も強いガンマ線は酸素原子核由来の
 6.92 MeVであり、非弾性散乱が支配的な反応であることが分かった
- これらの反応をシミュレーションに導入することで、
 中性子・酸素原子核反応由来の不定性の削減が期待される