暗黒物質起源の宇宙線反粒子観測 に向けた液体アルゴンTPCの開発

第2回 地下宇宙若手研究会 2021/11/25-26

青山一天 早稲田大学 寄田研究室

GRAMS: Gamma-Ray and AntiMatter Survey

地下宇宙若手研究会

気球搭載LAr-TPCを用いた宇宙線反粒子、MeV-γ線の観測実験@南極上空40km

参加研究機関 (日米協力実験)

- 早稲田大学(昨年度参加)
- 東京大学
- 大阪大学
- 理研

- (增加公
- 立教大学
- 広島大学
- Northeastern University
- Barnard College
- Columbia University
- MIT
- Oak Ridge National Lab
- UT Arlington

GRAMS collaboration meeting (2021 September)

Anti-Deuteron

なぜAnti-Deuteronか

- e⁺, p̄, γは2次宇宙線のBGにDM由来の信号が埋もれる
 →正確なモデルと精密観測が必要
- Anti-Deuteronは低運動エネルギーで2次宇宙線が抑制
 - 0 backgroundで観測可能
 - 1 eventの観測が大きなインパクトになる

Anti-Proton flux

Johannes Herms et. al., JCAP02(2017)018

地下宇宙若手研究会

3

Liquid Argon TPC

GRAMS detector

- □ 検出器の構成
 - long duration balloon (NASA or JAXAに依頼)
 - 2層のToF plastic scintillator
 - LAr-TPC (140×140×20 cm³程度)

Electric

Field

- LAr-TPC
 - 1相型
 - 荷電粒子は飛跡再構成。
 ガンマ線に対しては
 Comptonカメラとして機能
 - ・ 光学的にsegment
 → e⁻がドリフト中に
 pileupするのを抑制

検出器とAnti-Deuteronの反応 (Golden-event)

- 1. ToF scintillator
 - *β*測定
- 2. ionization/excitation of LAr
 - tracking \rightarrow dE/dX
- 3. Ar原子に捕獲 → 脱励起 w/特性X線
- 4. Ar核子と対消滅→ハドロン生成

Production from exotic Ar atom

地下宇宙若手研究会

exotic Ar原子からの放出粒子をGeant4を用いてシミュレーション

- $p \ge \overline{d}$ 異なる特性X線、 π^{\pm} を放出 → PIDとして使用可能
- ・ 検出器シミュレーションと組み合わせてPID能力を検討中

π⁺ π⁻ exotic Ar原子

 π^0 .

※原子核屋がモデルをよく検証しているが、LArのデータはない → 要実機検証

南極気球実験に向けて

南極気球実験に向けて

LAr setup at 早稲田大学

 直空断熱容器や冷凍機
 + 温度、圧力等のモニター系

LAr

周辺部材で止まる確率 (Anti-Deuteron)

- Geant4を用いてLArに到達する確率を評価
 - 検出器を覆う半球殻上から入射
 - ToF, LArステンレス容器の厚さを変化
- 検出器設計上のトレードオフ
 - ToF厚 ↔ 強度、時間分解能
 - 容器厚 ↔ 強度

LArに到達する確率 (*ā*, 150 MeV/nucleon)

LAr-TPCとAnti-Deuteronの反応 (実際)

地下宇宙若手研究会

□ LAr-TPC内の主な反応 (140×140×20 cm³)

• 高エネルギー側で inelasticの確率が高い

1. capture	golden event
2. pass	Deuteron/Anti-Deuteronを 分離できない
3. inelastic \rightarrow pass	
4. inelastic $\rightarrow \bar{p}$ capture	全てのtrackを 再構成できれば救える

物理学会, 2021秋季 15pT4-9, 櫻井真由

理想的な検出感度

- 検出器の条件
 観測時間 = 30日間
 LAr容器 = 6 mm, ToF = 6 mm × 2層
 粒子識別能力 = 100%
 (※LAr-TPC内に5 cm以上飛跡を残すことを要求)
- 理想的な条件では、DM fluxに到達可能
 → 背景事象などを考慮した現実的な感度を算出中

地下宇宙若手研究会

□ まとめ

- GRAMS実験は、「宇宙反粒子 (d, He)」と「MeV-γ線」の探索を目指し、 LAr-TPCを用いて南極気球実験を行う
- d, Heをプローブとした暗黒物質探索では、
 星間物質由来の背景事象が少なく、0 Backgroundの探索が可能
- 今年度から、気球実験に向けて準備を開始した

□ 今後の展望

 まずは、小型最低限のLAr-TPCを用いて、工学フライトを行うことを目指す (@大樹町?)

バックアップ