

輝度変化

- NEWSdm概要
- 現像プロセス
- 現像液の変更によるFog density
- カラーカメラによる輝度情報
- まとめ

東邦大学 理学部物理学科 素粒子物理学教室 学部4年 陳 夏姫

NEWSdm実験の概要

NEWSdm...

Nuclear Emulsions for WIMP Search - directional measurement

超微粒子原子核乾板(NIT)を用いた暗黒物質の直接方向探索を目標と する実験

暗黒物質は電荷を持たない→検出器を直接鳴らすことはできない

しかし、 物質と相互作用を起こして 跳ね飛ばされた荷電粒子は観測することができる

→NEWSdmでは

WIMPSに反跳された原子核の飛跡を超微粒子原子核乾板(NIT)によって 直接観測

検出器: 超微粒子原子核乾板(NIT)の作成

現像液の構成

・現像主薬

・<u>保恒剤(酸化防止剤)</u>

現像液の酸化を防止し、現像液の特性が変化するのを防止する

・<u>アルカリ剤</u>

現像液の還元力はpHに大きく依存する

・<u>カブリ防止剤</u>

カブリ(潜像核がなくても現像されるもの)を防止する

<現像調子を決めるパラメータ>

- ·現像時間
- ·還元力
- 現像液のpH

化学現像のプロセス

現像液中の現像主薬が潜像核を還元することにより、AgBr粒子中のAgが潜像核 に供給されることで現像銀を形成する現像法

溶解物理現像のプロセス

亜硫酸塩を含む現像液がAgBr結晶中のAgを溶解し、潜像核に供給する現像法

現像処理の果たす役割

<現像液変更のモチベーション>

 ペレクロ
 α

 飛跡
 ε =

b

a

grainの輝度を上げ、背景とのコントラストを高めることで 飛跡 個々のgrainの縁が明確になり楕円形状解析の検出効率が向上 することが期待される

プラズモン振動による光学応答は微粒子金属の 表面状態に依存

→観察しているのは現像銀 現像による作用が光学像に大きく関与する NEWSdmにおける現在のスタンダードはMAA現像10分 (pH10.00±0.01)

- •MAAのFog densityを基準とする
- ・写真現像で使用されている現像液レシピをもとにpH10.00に合わせた 各現像液の現像時間を決定する

g/0.5L	現像液	MAA	Pyrogalllol	FX-Na2SO4	FD-104	
主薬	メトール	1.250			1.500	
	ハイドロキノン			3.000	1.250	E-600 洛豹空頭傾動
	ピロガロール		5.000			
	フェニドン			0.050		
	アスコルビン酸	5.000				
酸化防止剤	亜硫酸水素ナトリウム		2.500	0.175		
	亜硫酸ナトリウム		12.500	50.000	15.000	
アルカリ剤	炭酸ナトリウム		16.500	4.650		
	メタホウ酸ナトリウム4水和物	23.700			10.200	
カブリ防止剤	Nal		0.045			
	NaBr	0.432		0.691	0.216	

2021/11/26

現像時間とFog densityの増加

relationship between dev-time of Pyrogallol and Fog density

→詳しくは後の森崎トークで

局在表面プラズモン共鳴は<u>金属ナノ粒子のサイズ、表面状態に依存</u> 顕微鏡の光学分解能を超えた情報を引き出すことができる

NITでは見ている飛跡は現像されたものなので 現像の作用が大きく関与した現像銀がこの役目を果たす

C_PTSについて

- ・6波長でのカラー撮像、飛跡解析が可能
- ・プリズム分光カメラにより可視光波長のオーバーラップ小 (立ち上げ中)

C_PTS 撮像画像

A:短RGB波長側

B:長RGB波長側

2021/11/26 第2回新学術「地下宇宙」若手研究会

MAA 10min ²⁴¹Am

C_PTSデータ取得法

C_PTSによる6波長解析

まとめ

超微粒子原子核乾板(NIT)の飛跡観察には現像が必須 →飛跡の光学像、光学情報に大きく関与する

期待されること

grainの輝度を上げることでの楕円解析の検出効率の向上 プラズモン振動による光学応答の変化

現像時間長くなると飛跡の輝度は上昇するが、Fog density も高くなる →MAAのFog density を基準に現像時間を決定

相対的に輝度はORPに依存?

展望

- α線でない飛跡のカラー輝度分布
- 楕円形状解析の検出効率評価