

高純度Nal(TI)結晶のバックグラウンド測定結果

2021.11.26

高純度Nal(TI)結晶のバックグラウンド測定結果@第2回地下宇宙若手研究会

1

- 高純度Nal(TI)結晶の必要性
 - DAMA/LIBRA実験
 - 目標とするNal(TI)結晶
 - Ingot #85の地上における測定結果
- 神岡地下実験室でのバックグラウンド(BG)測定および解析
 - インストール
 - エネルギー較正
 - データの解析手法: α 線,低エネルギー域
 - 解析結果: Ingot #85
 - α 線濃度解析
 - 解析結果: Ingot #94
 - α 線濃度解析と低エネルギー域
- まとめと展望

DAMA/LIBRA実験

DAMA/LIBRA実験:
 250 kg Nal(TI)検出器を使用し暗黒物質由来の季節変動を探索

目標とする高純度Nal(TI)結晶

• 主なバックグラウンド源:40K, Th系列, U系列

Radioactive impurities	Target purities
nat K (40 K = 0.017 %)	< 20 ppb
Th-series(²³² Th)	$< 16~\mu Bq/kg~(< 10~ppt)$
U-series Middle (²²⁶ Ra)	$<120~\mu Bq/kg~(<10~\text{ppt})$
U-series Bottom(²¹⁰ Pb)	< 50 µBq/kg

目標とする濃度

特に⁴⁰Kと²¹⁰Pbは半減期が長く、長期にわたってβ線及びγ線を出す

Nal(TI)結晶の現状

• 他グループのNal(TI)結晶の放射性不純物濃度

DAMA: NIM A592 (2008) 297. ANAIS,SABRE: Talk slides in TAUP2021. COSIME: Talk slides in TAUP2021

	DAMA	COSINE	ANAIS	SABRE	Our goal
^{nat} K [ppb]	< 20	< 35	18~40	4	20
²³² Th [µBq/kg]	2~31	2.5~35	~4	0.8	10
²²⁶ Ra [µBq/kg]	8.7~124	11~451	~10	5	10
²¹⁰ Pb [µBq/kg]	5~30	10~3000	740~3150	360	50

U-chain : 1ppt = 12.3 μ Bq/kg Th-chain : 1ppt = 4.0 μ Bq/kg ²¹⁰Pb : 1ppt = 2.5 kBq/kg

• DAMA/LIBRAグループのNal(TI)結晶は他グループと比較して高純度

Ingot #85の結果(PTEP 2021)

• Ingot #85:去年作成。地上(徳島)にてバックグラウンド測定

K.Fushimi et al. PTEP 2021 043F01

PSD

Ingot #24(過去最高純度)とIngot #85の比較

過去最高純度であったIngot#24を上回る高純度結晶の精製に成功

- Ingot #94:
 - 純化手順が正しいことを確認するために#85と同じ純化方法で作成し 神岡地下実験室で測定した

Ingot#85および#94の測定

- 7月に神岡地下実験室にてインストール作業
 - 各Ingotを別々のシールドにインストール 二つの検出器からOR Triggerを生成し MoGURAにてデータ収集
 - エネルギー較正➡バックグラウンド測定
 - ・ 低エネルギー域(<100 keV)と 高エネルギー域(≥100 keV)に分けて行った

#94 detector

高純度Nal(TI)を用いたBG解析の現状@第2回地下宇宙若手研究会

Energy calibration

• Ingot #85

---::較正曲線の境界

Calibration後のエネルギースペクトル

Energy calibration

• Ingot #94

---:較正曲線の境界

 $E_{\text{Low}} = p_0 Q = 1.1620Q$ $p_0 = 1.1620 \pm 0.0005 \text{ [keV/pC]}$

Hi Energy (≥100 keV):

$$\begin{split} \mathbf{E}_{\mathrm{Hi}} &= p_0 Q + p_1 = 1.3318 Q - 13.3 \\ \begin{cases} p_0 &= 1.3318 \pm 0.0008 & [\mathrm{keV/pc}] \\ p_1 &= -13.3 \pm 0.4 & [\mathrm{keV}] \end{cases} \end{split}$$

Calibration後のエネルギースペクトル

α線濃度(高エネルギー域)の解析

- α 線濃度の解析
 - PSD(Pulse Shape Discrimination)より α線イベントを抽出

Ingot #85 PSD Ingot #94 PSD PSD Ratio = Q_{part}/Q_{total} 9.0 8.0 6.0 6.0 L PSD Ratio = Q_{part}/Q_{tota} 10⁶ 10⁶ 0.9 10⁵ 0.8 10⁵ 0.7 B, y-rays 10⁴ B, γ-rays 10⁴ 0.6 α < PSD = 0.52 0.5 0.5 Sale de la composition de la compositio 10³ 10³ α < PSD = 0.40 0.4 0.4 α-rays 10² 10² 0.3 0.3 α -rays 0.2 0.2 10 10 0.1 0.1 0 0 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 Energy [keV_{ee}] Energy [keV.,]

低エネルギー域の解析

- PMTから出力されるノイズ信号の除去
 - ノイズ信号と、低エネルギーのLinear信号は似ている ⇒出力された信号の挙動の違いを利用して除去
 - 最初のパルスが生じてからNal(TI)時定数(200ns)以内に再び信号が来るか? ⇒来るなら信号、来ないならノイズと判定

α線濃度(Ingot #85)

- 5つの区間を仮定しイベント数から計算
 - $T_{\text{LiveTime}} \times M_{\#85} = 3.65693 \times 10^6 \text{ sec} \times 1.322 \text{ kg}$

各区間の放射性同位体とその計数

	RI	Energy Range [keV]	Events
А	²³⁸ U(U), ²³² Th(Th)	2180-2550	84 ± 10
В	²³⁴ U(U), ²³⁰ Th(Th), ²²⁶ Ra(U)	2580-2900	81 ± 9
С	²²⁸ Th(Th), ²²⁴ Rn*(U), ²¹⁰ Po(U)	2970-3330	60 ± 8
D	²¹⁸ Po(U), ²¹² Bi(Th), ²²⁴ Rn*(U), ²²⁰ Rn(Th)	3300-3740	34 ± 6
Е	²¹⁶ Po(Th)	3820-4043	8 ± 3

計算結果

Ingot #85	concentration	
^{nat} K [ppb]	< 20	
²³² Th [µBq/kg]	<3 (90% C.L.)	
²²⁶ Ra [µBq/kg]	8±1	
²¹⁰ Pb [µBq/kg]	15±3	

すべて濃度が目標値より小さい

α線濃度(Ingot #94)

T_{LiveTime} × M_{#94} = 2.44272 × 10⁶ sec × 1.344 kg
 各区間の放射性同位体とその計数

	RI	Energy Range [keV]	Events
А	²³⁸ U(U), ²³² Th(Th)	2180-2550	15 ± 4
В	²³⁴ U(U), ²³⁰ Th(Th), ²²⁶ Ra(U)	2580-2900	20 ± 5
С	²²⁸ Th(Th), ²²⁴ Rn*(U), ²¹⁰ Po(U)	2970-3330	67 ± 9
D	²¹⁸ Po(U), ²¹² Bi(Th), ²²⁴ Rn*(U), ²²⁰ Rn(Th)	3300-3740	89 ± 10
E	²¹⁶ Po(Th)	3820-4043	21 ± 5

※Run2039~Run2050はHV tripより除去

計算結果

Ingot #94	concentration	
^{nat} K [ppb]	< 20	
²³² Th [µBq/kg]	6.3±1.5	
²²⁶ Ra [µBq/kg]	< 2 (90% C.L.)	
²¹⁰ Pb [µBq/kg]	< 7 (90% C.L.)	

Ingot#85と同様すべて濃度が目標値より小さい ➡純化方法が確立した

13

2021.11.26

低エネルギー域解析(Ingot#94)

• ヨウ素の強度が時間経過で減衰していることを確認できた

緑枠は経過時間

まとめ

バックグラウンドを目標レベルまで下げることに成功(#85,#94)
 ⇒結晶の純化手法を確立

	Ingot #85	Ingot #94	Goal	目標達成!!
Crystal size	3" <i>φ</i> ×3"	3" φ ×3"	5" <i>φ</i> ×5"	× _ ×
^{nat} K [ppb]	< 20	< 20	< 20	
²³² Th [µBq/kg]	< 3	6.3 <u>+</u> 1.5	< 4	
²²⁶ Ra [µBq/kg]	8 <u>+</u> 1	< 2	< 10	
²¹⁰ Pb [µBq/kg]	15 <u>+</u> 3	< 7	< 10	

- 各検出器単体でも高感度な測定が可能なバックグラウンドレベル(=1.27 dru)
 ⇒二つの検出器によるAnti-coincidenceトリガーでバックグラウンド除去可能 (1 dru以下を予想)
- 大型Nal結晶を製造中。来年3月あたりのインストールを予定