⁴⁸Caの β 崩壊測定のための実験装置と改良 Experimental equipment and improvement for measuring β decay of ⁴⁸Ca

山本朝陽、原田卓明、吉田斉、梅原さおり^A 阪大理,RCNP^A^A

Osaka Univ. ,^ARCNP A.Yamamoto,T.Harada,S.Yoshida,S.Umehara^A

高い検出効率と少ないバックグラウンド(B.G.) が求められる

- ・(モンテカルロシミュレーション(Geant4)を用いて)検出器の効率の見積もり、改善。
- ・B.G. の計数と要因。

- ・検出器外部に⁴⁸Caソースを用意し、検出器内部で樹脂によりScを化学的に捕集。
 →目的核の増量
- ・30本のCsI(TI)検出器で4πを囲い計測

0 0 0

→<u>3γ同時検出効率の向上</u>

実験	標
	127 2

⁴⁸Caの半減期を求める

$$T_{1/2} = \frac{\ln 2 \cdot \epsilon \cdot N_{atom} \cdot T}{N_{obs}} < \frac{\ln 2 \cdot \epsilon \cdot N_{atom} \cdot T}{3 \cdot \sqrt{N_{BG}}}$$

ε:検出効率

 $\epsilon = \epsilon_{\gamma} \cdot \epsilon_{trap} \cdot \epsilon_{circuit}$ (γ 線検出効率)×(Sc吸着効率)×(循環効率) N_{BG}: BG計数

N_{atom}:原子核数 T:測定時間

・ γ 線検出効率(ε_{γ})の見積もり

A) MCを用いてを実験を再現。(48 Scは半減期が長く効率を求めるのには不向き) →Geant4で、人工線源(60 Co)を測定した結果を再現。 B) 再現したMCで 48 Scを崩壊させ、 γ 線検出効率(ε_{γ})を見積もった。

・γ線検出効率向上とBG削減のための解析方法の改善

A) ε_{γ} を向上させるために解析方法を改善した。

・N_{BG}の削減

A) BGの特定(TIでは足りないってとこまで、追加実験中)

・ γ 線検出効率(ε_{γ})とB.G.の見積もり

- ・γ線検出効率向上とB.G.削減のための解析方法の改善
- ・N_{BG}の削減

・ γ 線検出効率(ε_{γ})とB.G.の見積もり

- ・γ線検出効率向上とB.G.削減のための解析方法の改善
- ・N_{BG}の削減

- ・ γ 線検出効率(ε_{γ})の見積もり
- ・ γ 線検出効率向上とBG削減のための解析方法の改善 $T_{1/2} < \frac{\ln 2 \cdot \epsilon \cdot N_{atom} \cdot T}{3 \cdot \sqrt{N_{BG}}}$
- ・N_{BG}の削減

解析の課題と改善

4Hit以上のイベントがクラスタリングにより検出可能→検出効率向上。

- Signalイベント

特徴を抽出できるパラメータを使い BGとSignalをSignalらしさによって弁別する。

2.BestCutを決める。(何点以上をイベントとするか)

$$SN_{score} = \frac{N_{MC}}{\sqrt{N_{EXP}}} \qquad \qquad T_{1/2} < \frac{\ln 2 \cdot \epsilon \cdot N_{atom} \cdot T}{3 \cdot \sqrt{N_{BG}}} = \frac{\ln 2 \cdot N_{atom} \cdot T}{3} \cdot \frac{\epsilon}{\sqrt{N_{BG}}}$$

. T

. T

0<Score<1で最もSN値が最も高いものをBestCutの点数とする。

最もSNの値が高かった「(エネルギー重心+エネルギー比)+クラスタリング」をCutとして採用。

エネルギー重心とエネルギー比を用いて最尤法を適応 検出効率 $2.2 \rightarrow 9.7$ % BG計数 $48 \rightarrow 18 \text{ count/day}$

測定可能半減期

- ・ γ 線検出効率(ε_{γ})の見積もり
- ・γ線検出効率向上とBG削減のための解析方法の改善
- ・N_{BG}の削減

$$T_{1/2} < \frac{\ln 2 \cdot \epsilon \cdot N_{atom} \cdot T}{3 \cdot \sqrt{N_{BG}}}$$

B.G.の見積もり

3Hit:(983 keV:1038 keV) スペクトル Count/day/100keV **青:3γ3エネルギーカットスペクトル** 高エネルギーの影響を確認する 緑:3y2エネルギーカットスペクトル カット条件 1. HitしたCslが3本 2. 983 keV 1038 keVのγ線を含む ⁻²⁰⁸TI:2615 keV 10 ╙╍╖┖╼┧╘┲┦ 高いエネルギーからの染み込み • ¹²⁷I:(n, γ)反応 宇宙線 →ホウ素シート(中性子吸収剤)により軽減 ¹²⁷I:(n,γ)反応 宇宙線 →プラスチックシンチレータにより軽減 →高エネルギー領域の更なるB.G.除去が必要 (水で中性子を減速させる、地下で実験を行う) 10 3 4 5 9 0 1 2 6 7 8 MeV Csl(TI)30本の合計エネルギー

まとめ・展望

まとめ

- 実験で測定困難な⁴⁸Scの3γ同時検出効率を、
 モンテカルロシミュレーションで再現し求めた。
- 新しい解析方法を導入することで、SignalとBGの識別精度が向上した。
 →測定可能半減期 < 5.9×10²⁰年

展望

- 実験による宇宙線、中性子B.G.の除去(実験中)
- →水で中性子を減速させる。地下で実験を行い宇宙線の影響を減らす。
- B.G.の再現性の向上
- →²⁰⁸TI以外のBGの特定と再現。解析による除去