化学分離を用いた 硫酸ガドリニウム中 Ra-226含有量の高速測定

東大宇宙線研 細川佳志

2022/11/23 新学術「地下宇宙」若手研究会

超新星背景ニュートリノ(SRN) 探索

- 重元素合成には超新星爆発が必要
- 超新星ニュートリノがエネルギーの大半
- 観測された超新星ニュートリノは SN1987Aのみ
- 宇宙開闢からこれまでの約10¹⁷個の 超新星爆発によるニュートリノ(SRN)は 宇宙を漂っていて地球でも見れるはず
- スーパーカミオカンデ検出器(SK)で 超純水を標的としたSRN探索 (<u>PhysRevD.104.122002</u>)
 - 観測まであと一歩!

Already touched the predicted region! Pure water, with neutron tagging

スーパーカミオカンデ-ガドリニウム(SK-Gd)実験

硫酸ガドリニウム・8水和物 (Gd₂(SO₄)₃)

- 2020年の13tonに加えて, 今回は倍量の27tonをSK水に溶解
- U,Th系列などのRI低減処理済

Gd2(SO4)3含有RIへの要請値

Chain	Isotope	Criterion [mBq/kg]	Physics target
238 t t	$^{238}{ m U}$	< 5	SRN
0	226 Ra	< 0.5	Solar
232 Th	232 Th	< 0.05	Solar
1 11	228 Ra	< 0.05	Solar
23511	$^{235}{ m U}$	< 30	Solar
U	$^{227}Ac/^{227}Th$	< 30	Solar

β 2.273 ウラン系列 4.468 × 10⁹ y 2.455 (99.84% SKタンクへの導入前に ²³²Th トリウム系列 ²²⁸Th 4.775 1.405×10^{10} (7) _{oo}Th 1.9116 y 91Pa 234 計37ロット全ての ²³⁰Th 7.538 線のエネルギー 1.158 1.731 2.069 ²³⁴ Th 24.10d と放出割合 ²²⁸Ac 5.423 4.012 ₈₉Ac 0.0532 - 1.2%(y) 6.15 h 0.242-7.43%0.0844 不純物量の把握が必要 89Ac 4.687 0.295 - 19.3%²²⁴ Ra ²²⁸Ra β 0.0392 0.352 - 37.6% y線のエネルギー 0.609 - 46.1% ₈₈Ra 穜 と放出割合 5.75 y 3.66 d 0.768 4.94% **Ra 600×10^{3} 1.120 -15.10%0.239-43.3% ²¹²Pb α 5.685 1.238- 5.79% 0.300 - 3.28 % 238U. 232Th濃縮 α 4.784 1.765 - 15.40% 0.277 - 6.3% ₈₇Fr 87Fr (γ) y 0.186 2.204-5.08%0.511-22.6% ²⁰⁸Tl 0.583-84.5% ²²⁰Rn ²²² Rn 0.861 - 12.4 % 2.615 - 99.2 % 86Rn 3.8235 d seRn \rightarrow ICP-MS 55.6 s α 5.490 ²¹⁸At α 6.288 85At (y)1.5s 85At (7) ²¹⁰Po ²¹⁸Po 3.10 m (99.98 %) ß ²¹⁴Po ²¹⁶Po ²¹²Po ²²⁶Ra濃縮 6.686 (RaF) 84Po .643×10 84Po 2.99×10⁻⁷s 0.145s α 5.304 (γ) α 6.002 Bi(RaE) 5.012d 1.3×10⁻⁴% ²¹⁴Bi 19.9 m 7.687 (y) 1.508 .162 1.542B 2.248 83Bi → ICP-MS α 6.778 α ²¹²Bi 8.785 83Bi 60.55 m ²¹⁴ Pb 26.8 m ²⁰⁶ Pb (RaD) 22.20 35.94% 0.671 82Pb 0.728安定 ²¹²Pb ²⁰⁸Pb 6.051 ₈₂Pb ²⁰⁶Tl 210 TI 0.335 0.574 4.215 他RI→Ge 10.64 h 1.534 安定 81TI 1.30 m 4.200 m ²⁰⁸Tl ²⁰⁶Hg B 1.286 81Tl 1.307 1.519 ₈₀Hg 3.053 п (γ) 8.15 n

ゲルマニウム検出器での放射性不純物測定

東大Ge

<u>計37ロット全てを導入前に測定</u>

- 神岡では34ロットを測定し, 残り3ロットはヨーロッパの 共同研究者の測定結果を用いた

典型的なエネルギースペクトル

2022/11/23

新学術「地下宇宙」若手研究会

東北大Ge

"高速な"226Ra濃縮測定の動機

- 500mL Gd2(SO4)3硝酸溶液に溶けた ²²⁶Raを1mL硝酸溶液へと濃縮
 - AnaLig Ra-01
 - Ra²⁺イオンを捕獲
 - · EDTA溶液で捕獲したイオンを溶離
 - <u>Ln樹脂</u>
 - · 硝酸濃度で吸着イオンが変化
 - AnaLig処理後の残留Gdを捕獲

<u>ICP-MSを用いて,</u>

<u>濃縮した溶液中の226Ra濃度を測定</u>する

- 500mL Gd₂(SO₄)₃硝酸溶液に溶けた ²²⁶Raを1mL硝酸溶液へと濃縮
 - AnaLig Ra-01
 - · Ra²⁺イオンを捕獲
 - EDTA溶液で捕獲したイオンを溶離

- <u>Ln樹脂</u>

- · 硝酸濃度で吸着イオンが変化
- AnaLig処理後の残留Gdを捕獲

<u>ICP-MSを用いて,</u>

<u>濃縮した溶液中の226Ra濃度を測定</u>する

AnaLig Ra-01によるRa捕獲の概念図

測定の様子

- 500mL Gd2(SO4)3硝酸溶液に溶けた ²²⁶Raを1mL硝酸溶液へと濃縮
 - AnaLig Ra-01
 - Ra²⁺イオンを捕獲
 - EDTA溶液で捕獲したイオンを溶離

- <u>Ln樹脂</u>

- 硝酸濃度で吸着イオンが変化
- AnaLig処理後の残留Gdを捕獲

<u>ICP-MSを用いて,</u> 濃縮した溶液中の²²⁶Ra濃度を測定する

Ln樹脂によるイオン吸着率の硝酸濃度依存性

測定の様子

- 500mL Gd2(SO4)3硝酸溶液に溶けた ²²⁶Raを1mL硝酸溶液へと濃縮
 - AnaLig Ra-01
 - Ra²⁺イオンを捕獲
 - · EDTA溶液で捕獲したイオンを溶離
 - <u>Ln樹脂</u>
 - · 硝酸濃度で吸着イオンが変化
 - AnaLig処理後の残留Gdを捕獲

<u>ICP-MSを用いて,</u> <u>濃縮した溶液中の²²⁶Ra濃度を測定</u>する

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

結果 ICP-MSの高感度化

筑波大 榊枝, 日本放射化学会第66回討論会(2022)

※1 宮田滉介, 卒業論文, 2021 ※2 IF=インターフェース

24

サンプルの測定結果

preliminary

Unit	[ppq]	[mBq/kg]		
	ICP-MS 測定結果	本測定による結果 (サンプル内換算)	サンプル内 ²²⁶ Ra量 95%信頼度の上限値	Geによる測定
Procedure Blank (Background)	0.23±0.05	1.48±0.10	_	-
試料1 (lot220691)	0.19±0.02	1.32±0.07	<0.20	<0.28
試料2 (lot220603)	0.08±0.02	0.60±0.04	<0.20	<0.39 (0.21±0.14)

²²⁶Raへの要請値を満たすことを示し、SKへの導入決定

- どちらの試料もブランク以下。それぞれの誤差から上限値を計算した

- 本測定による上限値は溶解後のGe解析結果の値と矛盾しない
- ▶ <u>必要な測定時間は1サンプル測定なら2日(Geは20日)</u>

"新" Procedure Blank 測定結果

2022/10/6	Ba回収率 [%]	Ra回収率 [%]	Procedure Blank [mBq/kg(Gd粉)]
PB1	48.2	66.0	0.37±0.03
PB2	46.5	63.7	0.21±0.01
PB3	53.2	72.9	0.28±0.01

- Gd粉Ra含有量に対する要請値:0.5mBq/kg
- 安定して、充分低いProcedure Blankを達成できた。サンプル測定した時よりもBlank値低い。
 上達してクリーン度が上がった?とすると、サンプルも再測定すると低い値が出るかな。

測定に必要な日数

- ・ 余裕持ってやると(サンプル数×1日)+3日程度が必要
- ・ めちゃくちゃ急げば(サンプル数×1日)+1日で測定可能

まとめ

- ・ ガドリニウムをSKに導入して、超新星背景ニュートリノ観測したい!
- ・SKに導入前に、硫酸ガドリニウムのサンプルをRI測定した
 - ゲルマニウム検出器による²²⁶Ra子孫核種の測定は時間がかかる
 - 最後の2ロットはGeでは間に合わない時期に到着

<u>226Ra量を数日で測定可能な高速手法を新開発。</u>

- 充分な感度と測定速度を達成!
- 2種の樹脂を用いた化学分離
- 好感度化したICP-MSでの測定
- 溶解直前に届いた2ロットを測定 ²²⁶Raが許容量であると示した

