CANDLES実験における²⁰⁸TI背景事象 除去の為の波形弁別解析

大阪大学 M2 吉岡篤志

○CANDLES実験 CaF₂結晶を用いて、Q=4.27 MeVの⁴⁸Caの ニュートリノを含まない二重ベータ(O *ν* β β) 崩壊事象を探索する実験。

CANDLES実験は、波形を用いて α 線や β 線の情報を調査。

重大なバックグラウンド事象

波形弁別; PSD

放射線の識別には、PSD(Pulse Shape Discrimination)の手法を用いる。

<u>粒子の種類によって波形が異なることに基づいている。</u> 各の添字の信号らしさを示すパラメータである。

パラメータの種類: PSD_α, PSD_β, PSD_{β+LS}

○基準波形に用いる事象 寿命:1.78 ms、Q_α = 7.4 MeV
純粋なα事象:²¹⁹Rn→²¹⁵Po→²¹¹Pbの後段α事象 ^(E_e = 2.2 MeV)
純粋なβ事象:外部起因の²⁰⁸Tlのγ線事象 E_γ = 2.6 MeV
純粋なLS事象: BGのγ線がLSのみを発光させた事象

XLS:液体シンチレータ

PSDの計算方法

α基準波形について テールをフィット

計算領域で以下 の式を用いて算出。

$$PSD_{\alpha} = \frac{1}{dof} \sum_{i}^{2} \left(\frac{P.H._{i} - \overline{P.H.}_{\alpha_{i}}}{\sigma_{P.H._{i}}} \right)^{2}$$

i:channel, dof:自由度, <u>P.H._{αi}</u>:フィット後のα基準波形の波高, P.H._i:データ波形の波高, σ_{P.H.i}:データ波形の波高のエラー

解析の目標は、目的事象への感度の向上である。 先行研究において、既に130日のデータの解析を 終えており、結果を出した。

その後、更に約800日の追加データを取得しており、 統計的に感度を増やすことができている。

しかし、解析によるdeadtimeが多く、²³²Th不純物 が少ない結晶しか解析に利用できていなかった。

そこで、以下が求められる。

- ・²⁰⁸ⅠのBGの低減→解析に利用できる結晶の増加
- ・解析手法の改善→deadtimeの低減

➡ 最尤法(Likelihood)の導入

先行研究での解析との違い

²¹²Bi→²⁰⁸Tl→²⁰⁸Pb事象に対するカット条件

α, α+γ β+γ

- ○旧解析法
 - ・前段(²¹²Bi→²⁰⁸Tl) 1480 < E < 1935 keV PSD_{diff} < 0
 - ・後段(²⁰⁸TI →²⁰⁸Pb) 0 < *dT* < 18 min PSD_β < 1.5

○目指している新解析法(最尤法)

- ・前段(²¹²Bi→²⁰⁸Tl)
- E, PSD_{diff}
 - ・後段(²⁰⁸TI →²⁰⁸Pb)
- E, PSD_{diff} dT, dR

計6つのパラメータに可変カット

※現状は、前段のPSD_{diff}と*dT*と 前後段の*E*のみを独立に適用

 $\Re PSD_{diff} = PSD_{\alpha} - PSD_{\beta+LS}$

Likelihood解析

Likelihood解析により、PSD_{diff} > 0のα線候補事象 についても残すことができるようになった。 但し、これは²¹²Bi→²⁰⁸Tl崩壊を、純粋なα崩壊である ²¹⁵Po→²¹¹Pb崩壊と等しく扱ったものである。

また、エネルギーや 後段事象との時間差等 の他のパラメータとの 相関も取り入れること ができていない。

²¹²Bi→²⁰⁸TI崩壞

これまでの解析では、 純粋なα崩壊として取り 扱ってきた。 しかし実際は、γを含む 崩壊が存在する。

source: Table of Isotope

正しく識別する為には、²¹²Bi→²⁰⁸TI崩壊について MCシミュレーションで再現する必要がある。

²¹²Bi→²⁰⁸TI崩壊のMC作成に向けて

そこで、**α+γ**事象についてのMC波形の作成方法を 確立させる。 この時、MC波形がデータ波形でのPSD分布を再現

する必要がある。

その為に、まずは純粋なα事象、β事象について、 データ波形のPSD分布を再現するようなMC波形を 作成する。

相関なしのMC波形

基準波形に対して、エネルギーに応じて期待波形を 作成(青線)。

各chで、期待波形の波高に応じた $\sigma_{(P.H.i)}$ でランダム に振り、シミュレーション波形を作成(赤線)。

12

α事象のPSD_α分布

この方法では、PSDが実際よりもかなり小さく なってしまい、PSD分布が全く合わない。

MC波形の作成方法 (~520 nsec) 基準波形情報とch間の相関を取り入れる為、 以下のパラメータ p_i を導入。 $p_i = \frac{P.H._i - \langle P.H._i \rangle}{\sigma_{\langle P.H._i \rangle}}$

P.H._i:データの波高、**〈**P.H._i **〉**:波高の期待値、 *σ*_{〈P.H.i}〉:波高の誤差

p_iは、データの波高が期待値からどれくらい ずれているかを示すパラメータである。

MC波形の作成方法 (~520 nsec)

上記の**p_i: p_{i+1} 2**次元ヒストグラムを再現するように シミュレーション波形を作成。 但し、カウント数の少ない両端は除外。 p_{i+1}から定義を用いて**P**. H_{·i+1}を逆算。

※テール部分については、相関なしで単純にふら つかせている。

これらのMC波形に対して、データ波形と同様の 方法で、PSDを計算する。

純粋なα事象のPSD分布

17

PSD分布の比較

18

(1)MC波形のPSD分布を改善する。 ②別の方法として、共分散行列を用いたMC波形作成。 ③LSについて、 α 、 β と同様に、MC波形を作成し、 X+LS事象をMC波形に取り入れる。 (4)²¹⁹Rn→²¹⁵Poのα事象, α+γ(+LS)事象のMC波形を作成し、 PSD_α, PSD_β, PSD_{β+LS}を計算、データと比較。 (5)²¹²Bi→²⁰⁸TIのMC波形を作成し、PSDやエネルギー等の値を 取り出し、Likelihood解析に組み込む。 ⑥新解析による、BGの除去効率やlive timeの改善を定量的 に評価する。

summary

- ・CANDLES実験・・・⁴⁸Caの<mark>0vββ</mark>崩壊事象の探索実験
- ・重大なバックグラウンド:²⁰⁸TI→²⁰⁸Pbのβ+γ崩壊
- ・識別の為に波形弁別(PSD)を実行。
- ・²⁰⁸TIBGの除去効率の評価にMCシミュレーションを使用。
- ・データ波形のPSD分布を再現するような

MCシミュレーション波形を作成。

- ・MC波形がデータ波形のPSD分布を再現できていない。
- ・Likelihood解析に²¹²Bi→²⁰⁸TlのMC波形から得られる値を 組み込むことで、除去効率の向上を目指している。

Back up

β基準波形の規格化因子を PSD_{β} 計算時の値で固定し、 520 nsecまでの領域で β +LS基準波形をフィットする。

 $^{219}Rn \rightarrow ^{215}Po \rightarrow ^{211}Pb$

図のように前段事象はγを含む崩壊の為、 PSD_αが 大きい事象も数多く存在する。

推定標準偏差
$$\sigma_{P.H.i}$$
の計算方法

$$\sigma_{\mathrm{P.H.}_{i}}^{2} = \sum_{j}^{2} \sigma_{\mathrm{P.H.}_{ij}}^{2}$$

j : 10inch, 13inch, 20inch

$$\sigma_{P.H._{i_j}} = C_j \cdot \sqrt{P.H._{i_j}}$$

P.H.__i PMTの種類ごとの波高

X_i:データの波高 (X_i):α基準波形の波高 (波高の期待値)

純粋なα事象について、各チャンネル、 各イベントで調べる。

データ点の標準偏差の評価

実データのPSD分布

純粋なa事象のPSD_a分布

純粋なβ事象のPSD_β分布

	純粋なα事象のPSD _α	純粋なβ事象のPSD _β
平均	1.191	1.123
標準偏差	0.2962	0.2626

PSD分布が一致しない理由

図のように、データでは、隣のchとの強い 相関がある為、これを取り入れる必要がある。

波高の期待値ごとに、次のchの波高との差を調査。

これらの分布に従うように、シミュレーション波形 を作成。

ch間の相関のみでの波形

シミュレーション波形の一例

基準波形からかなり逸れてしまう。 →基準波形の情報を取り入れる必要有り。

MC波形 (~520 nsec)

データの取得方法が途中から変化する為、 520 nsecまでのみ作成。

MC波形の作成方法(テール部分)

520 nsec以降について、期待波形 を作成し、64nsecごとに合算して、 その値をガウス関数で振らつかせる。 (データの取得方法を再現する為)

MC波形の作成方法(テール部分)

振らつかせた値を32chに等分し、32chの中心を直線 で繋いでゆく。

波高の期待値の計算方法

データ波形の4000 nsecでの積分値を計算 →積分値を用いて基準波形(データと同事象)を規格化

規格化した基準波形の波高をその波高の期待値とする