KamLAND-Zen実験における 長寿命核バックグラウンドの低減に向けた 新型イメージングディテクターの開発

森田大暉,清水格,井上邦雄,渡辺寛子

東北大学ニュートリノ研究センター

他 KamLAND-Zen Collaboration

11/24 第3回「地下宇宙」若手研究会

つくば国際会議場

目次

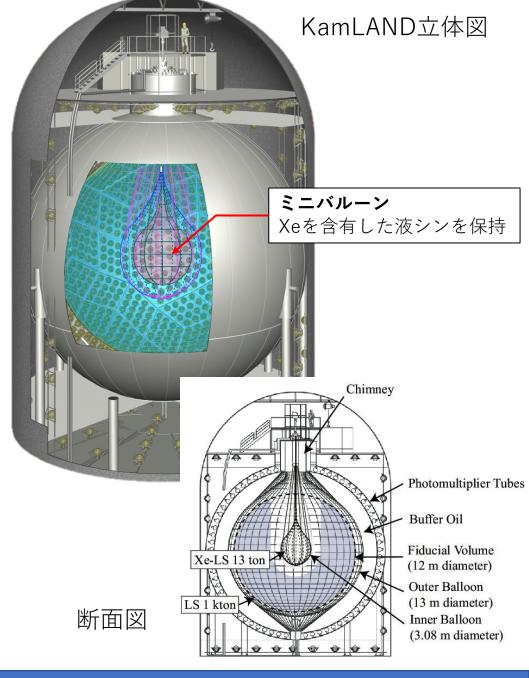
- 1,物理の目標
 - KamLAND-Zen実験
 - 概要
 - KamLANDの高感度化
 - 主要なバックグラウンド
 - イメージングによる粒子識別

- 2, イメージングディテクター開発
 - 開発の方針
 - 先行研究
 - 現在開発していること
 - Baker-Nunn光学系
 - 現在の設計
 - 視野
 - 獲得光量
 - 今後の課題&展望

1,物理の目標

KamLAND-Zen実験

KamLAND検出器


- 岐阜県神岡池の山の地下1000mに設置された ニュートリノ検出器
- 1ktの液体シンチレーターで数MeVの反応を観測
- 極低放射能環境

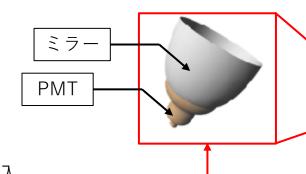
KamLAND-Zen実験

- 136 Xe が起こす $0
 u\beta\beta$ 崩壊の検出を目指す
- 約750kgのXeを含有した液シンをナイロン製 バルーンで保持し、検出器中心に導入

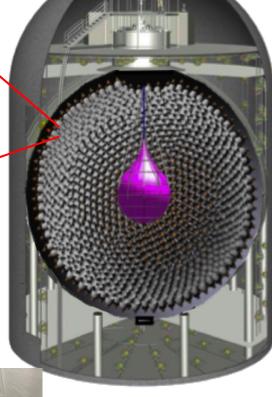
最新結果

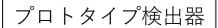
 $0
u\beta\beta$ 崩壊の半減期への制限 (世界最高感度) $T_{1/2}^{0
u} > 2.29 \times 10^{26} [year]$

KamLANDの高感度化

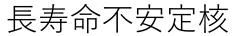

将来計画 KamLAND2-Zen実験


- Xe量 約750 kg → 約1 t
- ・ 集光量の増加
 - ▶ 大光量 & 高透過率液体シンチレーターの導入 ~10000 photon/MeVの発光
 - ➤ PMT用集光ミラー&高量子効率PMTの導入

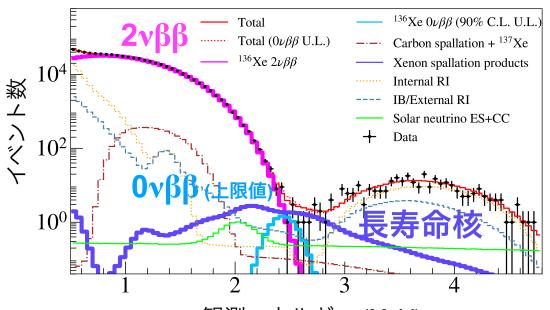

→エネルギー分解能の向上


プロトタイプ検出器

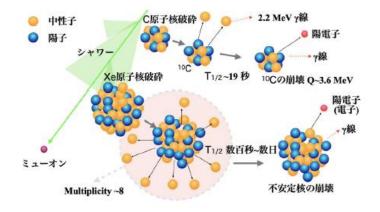
- 小型のタンクを用いた 集光量増加の実証実験
- 現在、タンクを水で満たし ミラー付きPMTの性能試験が開始



KamLAND-Zen実験のバックグラウンド


主要なバックグラウンド (2.35~2.7 MeV)

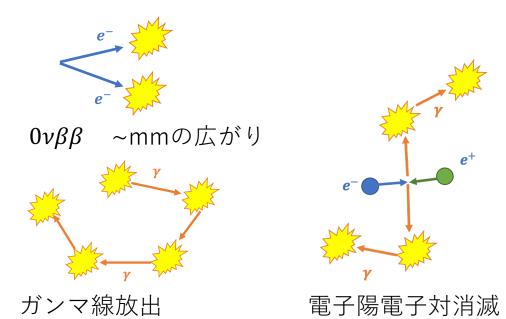
種類	イベント数[/day/	kton]
2νββ	11.98 ←	エネルギー分解能 向上により低減
RI in XeLS	0.98	
Solar v	1.69	
長寿命不安定核	12.52	



- 寿命が数分~数日の原子核
- 宇宙線ミューオンがXe原子核を破砕することで発生
- 現在の検出器&解析手法では除去が難しい
- →除去に向けた解析手法&装置開発が進行中
 - イメージングディテクターによるPID 今回のテーマ
 - 中性子検出効率増加のための新型FEEボード開発
 - 機械学習を用いた解析的な除去 etc..

観測エネルギースペクトル

観測エネルギー (MeV)


イメージングによる粒子識別

液シン中での発光点分布の違い

- ベータ線のみのイベント (0νββなど) →反応点周りでエネルギーを落とす 発光はほとんど反応点周辺で起こる
- ガンマ線を含むイベント(一部の長寿命核) →コンプトン散乱による発光が支配的 反応点から離れた位置でも発光が起こる

発光点を2or3次元的に撮影し、発光量や 発光分布の広さを捉えることで、 ベータ/ガンマの識別ができる可能性 長寿命核バックグラウンドの除去へ応用

> **0νββ**のROI (2.35~2.7 MeV)で発生頻度が高い長寿命核BG 他にも30種ほど存在

~10cmの広がり

核種 イベント数 [/day/kton] 124 I (EC/ $\beta^+\gamma$) 0.18 130 I ($\beta^-\gamma$) 0.17 122 I (EC/ $\beta^+\gamma$) 0.11 88 Y (EC/ $\beta^+\gamma$) 0.11 118 Sb (EC/ $\beta^+\gamma$) 0.11

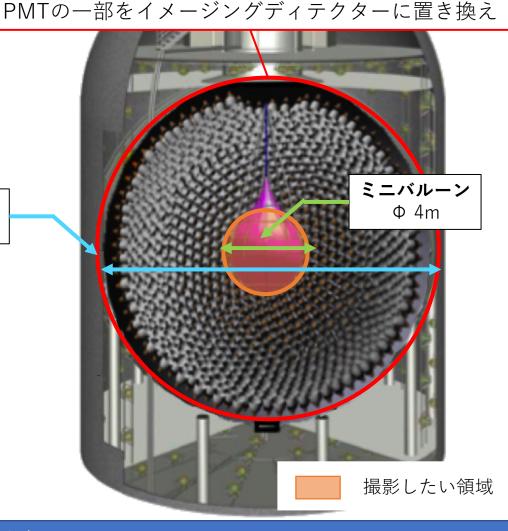
2, イメージングディテクター (ID) 開発

開発の方針

KamLAND2イメージ図

目標

KamLAND2-Zenでの 長寿命核バックグラウンドを90%除去

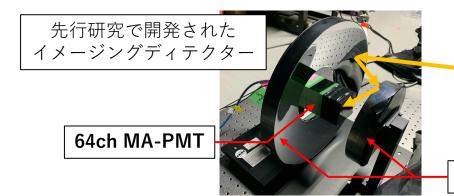

方法

- KamLAND2にイメージングディテクターを 複数台設置
- ミニバルーンを多方向から撮影し、 液シン発光の広がりを3次元的に捉える
- 発光点分布や発光量から粒子識別

イメージングディテクターの開発項目

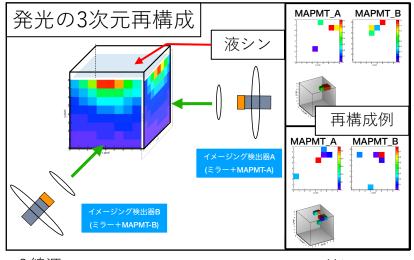
- 光学系
- 撮像素子
- イベント識別アルゴリズム

外壁 Φ 18m

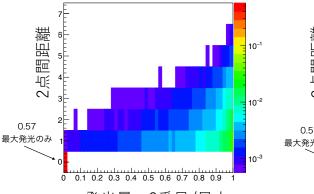


先行研究

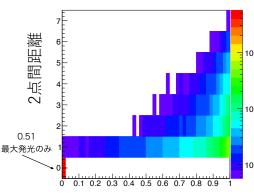
先行研究


- イメージングディテクターの構成 光学系:ミラーのみ 撮像素子:64ch マルチアノードPMT
- ディテクターは2台作成
 γ線源 (⁶⁰Co) とβ線源 (⁹⁰Sr) それぞれに対し液シンの 発光を2方向から撮影&位置再構成
- ・ 最大発光、2番目に発光した位置の発光量比& 2点間距離からPIDを試みた → 分布に違い

液シン発光点の3次元的な広がりからPID 実現可能性が実験室レベルで示せた


光線

非球面ミラー



β線源

γ線源

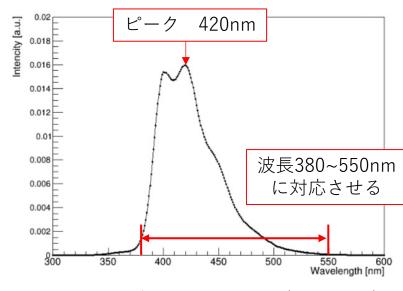
発光量 2番目/最大

発光量 2番目/最大

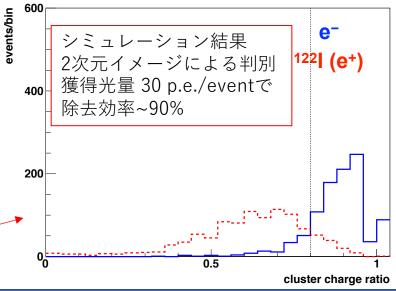
現在開発していること

現在 光学系から新しく開発中

- KamLAND2-Zenに合わせた設計に
 - バルーン全体を見るために視野の広角化
 - ミラー付きPMTと大きさを揃える
 - 液シン中での使用に対応 etc...


光学系で目標とする性能

- 視野 ピント位置 レンズ第一面から8m程度 奥行方向 ピント位置から±2m 垂直方向 ±2m@ピント位置
- 位置分解能 ~3cm


現在のKamLANDの位置分解能 12 cm/√E

- 倍率 1/20倍
- 視野全体で像面での点光源像のRMS(収差)が<1.5 mm
 - 位置分解能 & 倍率からの要請
- 波長 液シンの発光スペクトルに対応
- 獲得光電子数 > 30 p.e./event (2.35~2.7 MeV)全イメージングディテクターの合計

KamLAND2液シンの発光スペクトル

長寿命核除去効率(1221のみ)

Baker-Nunn光学系

構成

非球面レンズ3枚+球面ミラー+球面センサー

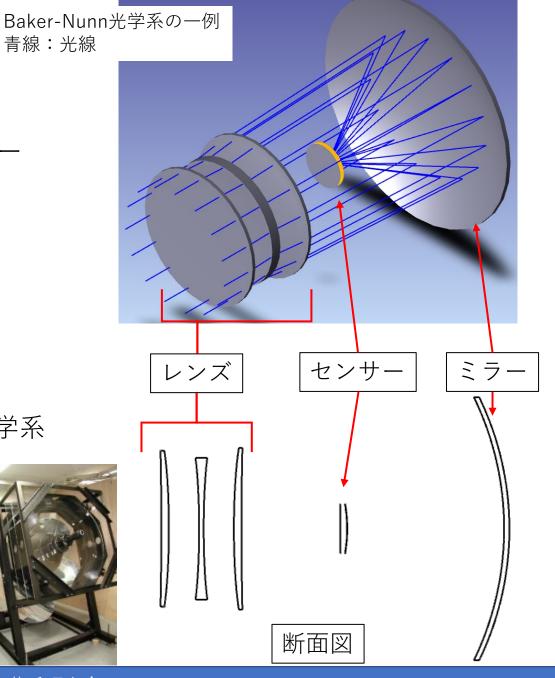
利点

- 広角かつ視野内で獲得光量が均一
- 他の光学系では

レンズのみ:高額になる

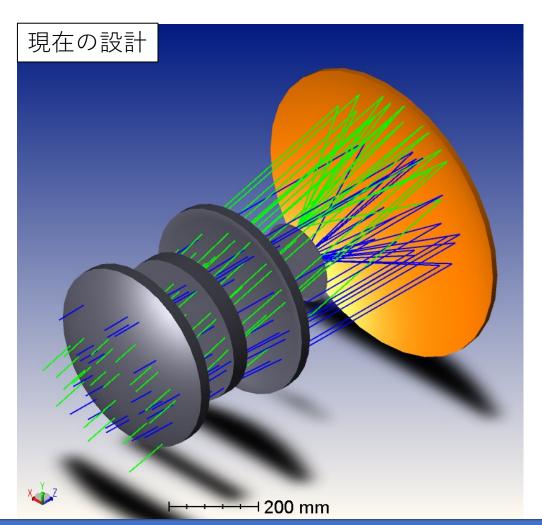
ミラーのみ:画角が広くとれない

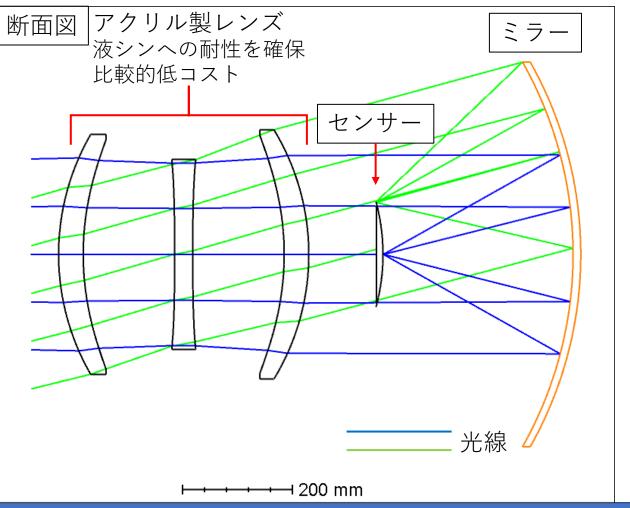
→レンズ&ミラー両者のバランスをとった光学系


• PMT集光ミラーの経験も活かせる

要求を満たす光学系として有力な候補

Baker-Nunn光学系はAshra実験で 大気チェレンコフ光メージングに使われた実績がある

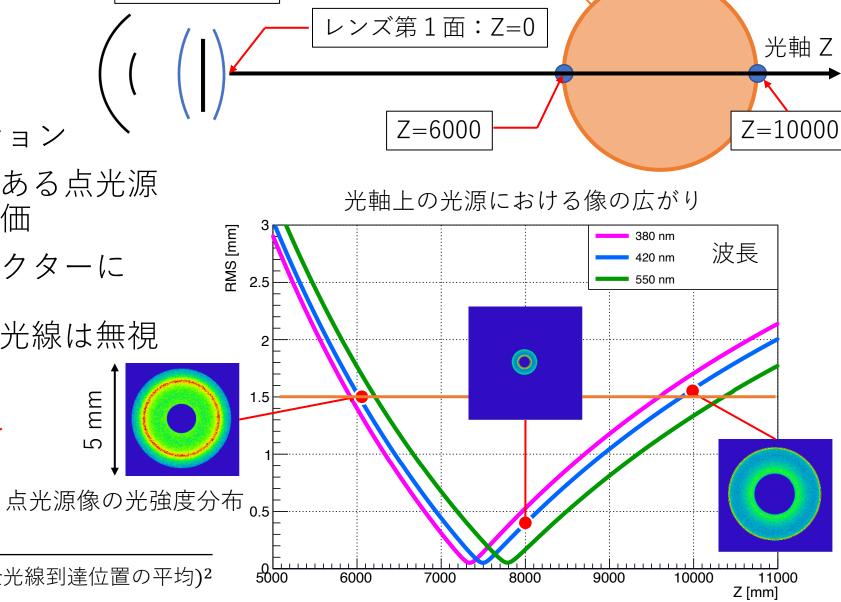

青線:光線



現在の設計

※液シンの屈折率も考慮した 調整はまだ

光学設計ソフトZemaxでレンズやミラーの形状&配置を調整

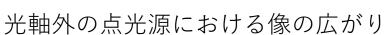


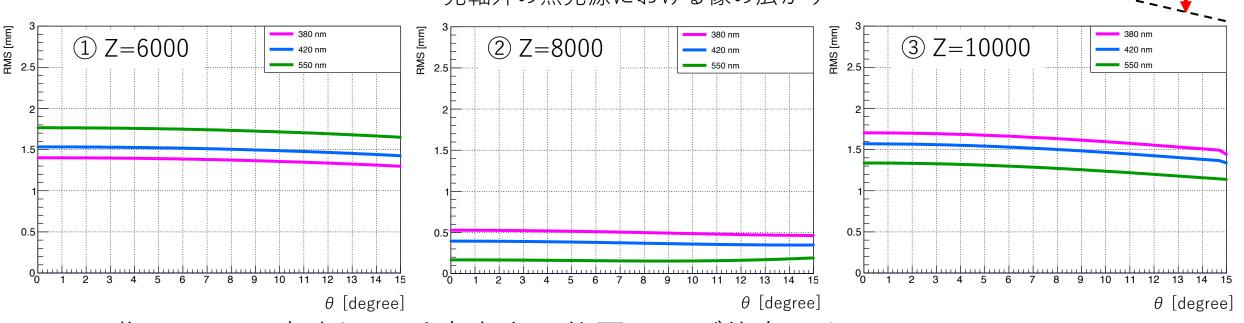
収差の評価 奥行方向

Zemaxでのシミュレーション

- ・光軸上の様々な距離にある点光源 における像のRMSを評価
- ・ 光線を光源からディテクターに 入射するように追跡 センサーまで届かない光線は無視
- 干渉は考えない

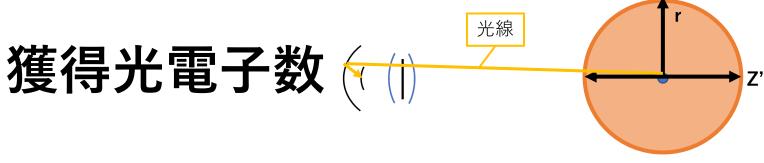
目標とする領域で収差を 十分小さくできている




イメージング

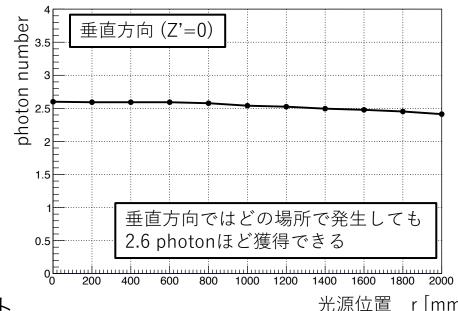
ディテクター

収差の評価 垂直方向

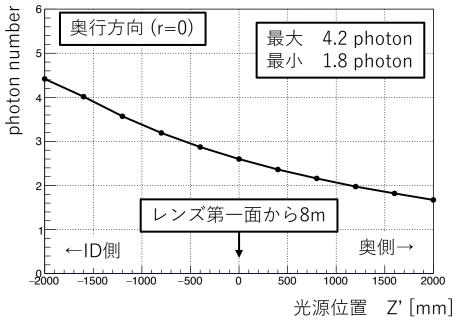

• 見たい範囲の手前、中心、奥の 3箇所において垂直方向の 広がりを評価

- 像のRMSは点光源の垂直方向の位置にほぼ依存しない
- 垂直方向でも目標を十分達成

(3)


光線追跡による獲得光量推定 with Zemax

- 光源から1000万本の光線を全方向に発射し $0\nu\beta\beta$ のROI 1イベントあたりの獲得光量を推定
- 波長420 nmの単色光と仮定
- レンズ→ミラー→センサーと進んだ光線数をカウント
- 獲得光量 (photon number) = 到達した光線数 <u> 発射した光線数</u>×10000 [photon/MeV]×2.5[MeV]


KamLAND2-Zenに必要な台数

- Y=0, Z'=0の点での獲得光量 2.6 photonから計算
- 液シンの減衰長 8.5 mの効果も考慮
- → 30 p.e./event 獲得には60 ~ 74 台 w/ MPPC Q.E. 40~50%

イメージングディテクター1台あたりの獲得光量

r |mm|

今後の課題&展望

設計

光学系の調整

- 液シンの屈折率も考慮
- 工作精度に合わせた設計

撮像素子の選定

• MA-PMT or MPPC?他にも?

アルゴリズム開発

- 複数の検出画像を組み合わせ 3次元再構成をする手法
- PIDのためのパラメータを選定

シミュレーション

- 部材のひずみや工作精度に よる光学性能の変化を評価
- バックグラウンド識別能力の評価

実機試験

- 実験室での試験(空気中)
- プロトタイプ検出器での試験(液中)
 - PMTの一部をイメージングディテクターに変えて試験

まとめ

- 0νββ崩壊の観測を目指しているKamLAND-Zen実験ではさらなる観測精度の向上を目指し、長寿命不安定核の除去手法を新たに開発している。
- 発光点の広がりがベータ線のみのイベントとガンマ線を含む イベントで異なることに着目し、イメージングによる除去手法の開発を 進めている。
- 現在は光学系の開発を進めており、Baker-Nunn光学系を検討している。 今後、光学系の細かな調整をシミュレーションと合わせて行い、 実機試験でバックグラウンド識別能力を評価していく。

目次

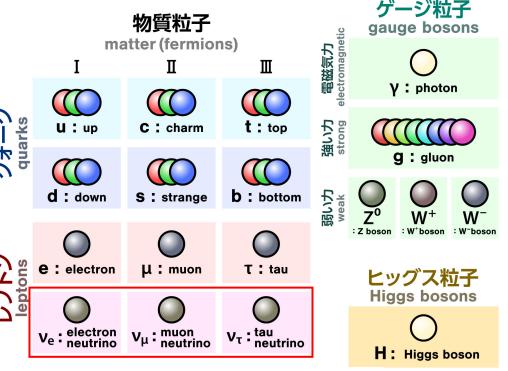
- 1,物理の目標
 - KamLAND-Zen実験
 - 概要 p.3
 - KamLANDの高感度化 p.4
 - 主要なバックグラウンド p.5
 - イメージングによる粒子識別 p.6

- 2, イメージングディテクター開発
 - 開発コンセプト p.8
 - 先行研究 p.9
 - 現在開発していること p.10
 - Baker-Nunn光学系 p.11
 - 現在の設計 p.12
 - 視野 p.13~14
 - 獲得光量 p.15
 - 今後の課題 & 展望 p.16

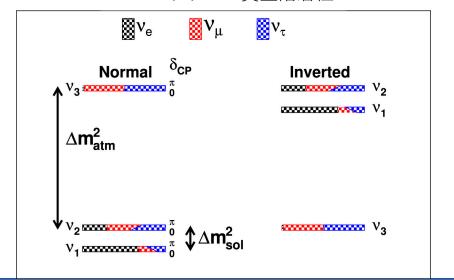
Back Up

2022/11/23

ニュートリノとは


特徴

- 重力&弱い相互作用しか受けない中性レプトン
- 3種類存在(電子、ミュー、タウ)

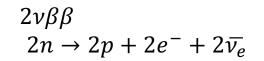

理論的に完全に説明できていない

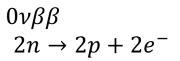
マヨラナ性

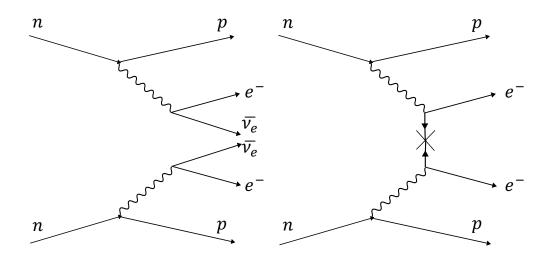
- ニュートリノ=反ニュートリノとなる性質
- ニュートリノにマヨラナ性があると、 質量の小ささが自然に説明できる
- 質量階層性にも制限を与える
- 現在まで未確認

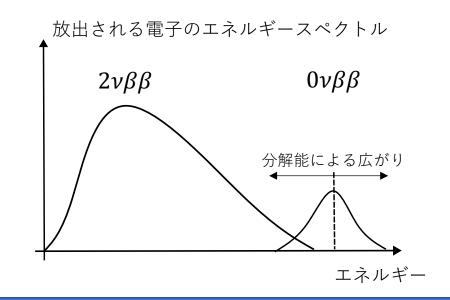
ニュートリノの質量階層性

2022/11/23


0νββ崩壊


2重β崩壊

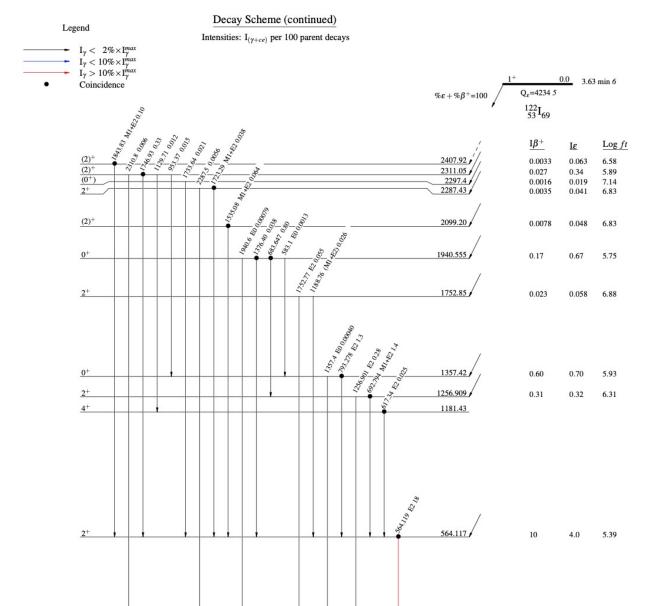

- 2つのβ崩壊が同時に起こる現象
- 崩壊を起こす核種が限られており、 かつ寿命が非常に長い→非常に稀なイベント
- $2\nu\beta\beta$ と $0\nu\beta\beta$ の2つの崩壊モードが存在


$0\nu\beta\beta$ 崩壊

- β崩壊で発生したニュートリノがもう一つの核子に 吸収され、ニュートリノが発生しないモード
- 電子が単一のエネルギースペクトルを持つ※エネルギー分解能のため観測されるスペクトルは広がりを持つ
- ニュートリノにマヨラナ性がある場合のみ起こる $\rightarrow 0\nu\beta\beta$ の観測=ニュートリノのマヨラナ性の証明
- 世界各地で観測を目指し様々な実験が進行中

長寿命崩壊核種

Nucleus	Q-value [MeV]	half-life[sec]	Expected rate (ROI) [/day/kton]	Background rate (ROI) [/day/kton]	Background rate in Long-lived vetoed (ROI) [/day/kton]
⁸⁸ Y	$3.62(\beta^{+})$	9.215×10^{6}	0.14(0.110)	0.14(0.11)	0.00012(9.6e-05)
$^{90m1}\mathrm{Zr}$	$2.32(\beta^{-})$	809.2×10^{-3}	0.093(0.012)	0.059(0.0076)	0.034(0.0044)
$^{90}{ m Nb}$	6.11(EC)	5.220×10^4	0.095(0.024)	0.022(0.0056)	0.014(0.0035)
$^{96}\mathrm{Tc}$	2.97(EC)	9.900×10^{3}	0.059(0.012)	0.055(0.011)	0.0040(0.00082)
98 Rh	5.06(EC)	5.220×10^{2}	0.076(0.011)	0.0016(0.00023)	0.059(0.0085)
$^{100}\mathrm{Rh}$	3.63(EC)	7.488×10^4	0.23(0.088)	0.20(0.075)	0.035(0.013)
$^{104}\mathrm{Ag}$	4.28(EC)	4.152×10^{3}	0.16(0.012)	0.020(0.0015)	0.14(0.010)
$^{104m1}\mathrm{Ag}$	4.29(EC)	2.010×10^{3}	0.11(0.018)	0.011(0.0018)	0.096(0.016)
107 In	3.43(EC)	1.944×10^{3}	0.14(0.019)	0.0040(0.00057)	0.068(0.0096)
$^{108}\mathrm{In}$	5.16(EC)	3.480×10^3	0.19(0.089)	0.019(0.0085)	$0.17(0.077)^{'}$
^{110}In	3.89(EC)	1.764×10^4	0.24(0.053)	0.087(0.020)	0.15(0.033)
$^{110m1}{ m In}$	3.94(EC)	4.146×10^{3}	0.35(0.066)	0.13(0.025)	0.19(0.036)
$^{109}\mathrm{Sn}$	3.85(EC)	1.080×10^{3}	0.12(0.027)	0.0044(0.00098)	0.11(0.023)
$^{113}\mathrm{Sb}$	3.92(EC)	4.002×10^{2}	0.23(0.036)	0.0066(0.0010)	0.16(0.025)
$^{114}\mathrm{Sb}$	$5.88(\beta^{+})$	2.094×10^{2}	0.30(0.020)	0.0096(0.00064)	0.22(0.015)
$^{115}\mathrm{Sb}$	3.03(EC)	1.926×10^{3}	0.84(0.031)	0.087(0.0032)	0.63(0.023)
$^{116}\mathrm{Sb}$	4.71(EC)	9.480×10^{2}	0.94(0.071)	0.19(0.015)	0.68(0.051)
$^{118}\mathrm{Sb}$	3.66(EC)	2.160×10^{2}	$1.29(0.17)^{'}$	0.86(0.11)	0.23(0.030)
$^{124}\mathrm{Sb}$	$2.90(\beta^{-})$	5.201×10^{6}	0.054(0.016)	0.054(0.016)	0.00018(5.3e-05)
$^{115}\mathrm{Te}$	4.64(EC)	3.480×10^{2}	$0.12(0.012)^{'}$	0.0036(0.00035)	0.093(0.0090)
$^{117}\mathrm{Te}$	$3.54(\beta^{+})$	3.720×10^{3}	0.59(0.052)	0.11(0.0097)	0.44(0.039)
^{119}I	3.51(EC)	1.146×10^3	0.53(0.053)	0.052(0.0052)	0.39(0.038)
^{120}I	5.62(EC)	4.896×10^{3}	0.95(0.091)	0.25(0.024)	0.64(0.061)
$^{122}\mathrm{I}$	4.23(EC)	2.178×10^{2}	$1.97(0.29)^{'}$	0.78(0.11)	$0.76(0.11)^{'}$
$^{124}{ m I}$	3.16(EC)	3.608×10^{5}	1.65(0.19)	1.54(0.18)	0.058(0.0066)
^{130}I	$2.95(\beta^{-})$	4.450×10^4	1.19(0.20)	1.01(0.17)	0.18(0.029)
^{132}I	$3.58(\beta^{-})$	8.262×10^{3}	0.43(0.15)	0.28(0.098)	0.14(0.048)
^{134}I	$4.18(\beta^{-})$	3.150×10^{3}	0.18(0.043)	0.10(0.024)	0.075(0.018)
$^{121}{ m Xe}$	3.75(EC)	2.406×10^3	0.54(0.10)	0.092(0.017)	0.40(0.074)
$^{125}\mathrm{Cs}$	3.10(EC)	2.802×10^{3}	0.27(0.012)	0.064(0.0029)	0.17(0.0075)
$^{126}\mathrm{Cs}$	4.82(EC)	9.84×10^{1}	0.080(0.011)	0.0063(0.00086)	0.043(0.0059)
$^{128}\mathrm{Cs}$	3.93(EC)	$2.17{\times}10^2$	0.23(0.031)	0.034(0.0046)	$0.12(0.016)^{'}$
Total 32 species	-	-	14.4(2.11)	6.28(1.06)	6.46(0.84)
Total All	-	-	16.0(2.34)	6.96(1.17)	7.14(0.93)

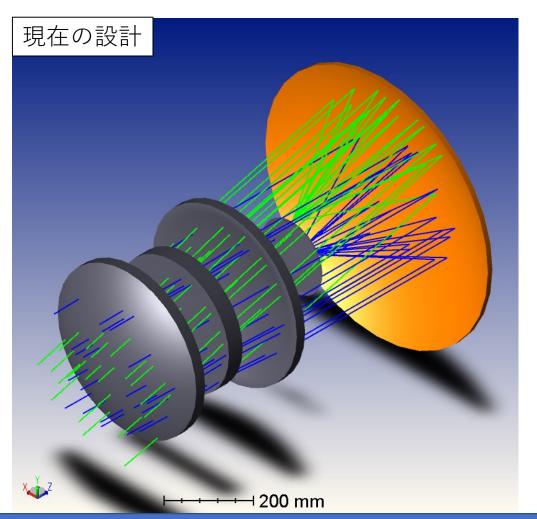

2022/11/23 22

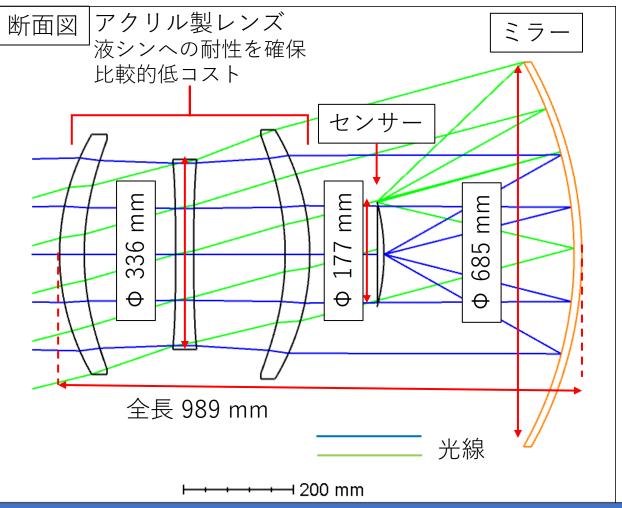
P.10 獲得光量シミュレーションの仮定

- 1. KLG4とROBASTを使用
- 2. イメージングディテクターを検出器内に配置
 - 検出器中心から3mの位置
 - 角度をずらしながら6台設置
- 3. 検出器中心で崩壊を起こす粒子を生成、イメージングディテクターの 入射面 まで光子を輸送 (KLG4)
- 4. イメージングディテクターの入射面から撮像素子面まで光線追跡 (ROBAST)
- 5. 6台それぞれで得た画像を検出器中心を軸に回転、重ね合わせる。
- 6. Vertex reconstruction 重ね合わせた画像からヒット位置の中央値を計算。Vertexとする。
- 7. Vertexと光線のヒット位置から、電荷比(Q_{ΔR<7 cm}/Q_{total})を計算

2022/11/23 23

122| 崩壊図式




4.95

現在の設計

※液シンの屈折率も考慮した 調整はまだ

光学設計ソフトZemaxでレンズやミラーの形状&配置を調整

