anawat@rcnp.osaka-u.ac.jp

UGAP-YR2022 / 若手研究会 2022 つくば国際会議場 2022/11/23 - 24

Current Status and Preparation for the Production of ⁴⁸Ca by Laser Isotope Separation (LIS)

<u>A. Rittirona^{1*}</u>, S. Umehara¹, Y. Minami¹, S. Yoshida², I. Ogawa³, S. Tokita⁴, H. Okuda⁵, H Niki^{1,3}, M. Uemukai⁶, and N. Miyanaga^{5,7}

¹RCNP, Osaka University

²Dep. Sci., Osaka University

³Dep. Eng., Univ. Fukui

⁴ICR, Kyoto Univ.

⁵ILE, Osaka Univ.

⁶Dep. Eng. Osaka Univ.

⁷Inst. Laser Tech.

CAlcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by Low Energy Spectrometer (CANDLES)

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by <u>L</u>ow <u>Energy</u> <u>Spectrometer</u> (CANDLES)

Candles

Calcium-48 [N.A. = 0.187%]

- Ca has no gaseous compound
- Can be enriched by electromagnetic separator (Expensive)
 - ⁴⁸Ca 10 grams/year (By MS) -> 1,000,000 \$/g (~1億円/g)

Isotope separation technique	Separation Coefficient	Production efficiency (y ⁻¹)	Cost	Limitation
Electromagnetic separator	High	Ten of grams	High	 High power consumption Low productivity
Industrial isotope separation Gas Diffusion Gas Centrifuge 	High	Thousands of tons	Low	 Only the gas phase compound is possible Compatible for U
Chemical isotope exchange	Small	Tons	Low	 Extractant loss Solubility problem Development of the cascade enrichment is required
Ion exchange chromatography	Small	Hundred of gram	Low	 Time consumption Low conversion
Laser isotope separation	High	Kiligrams	Middle	 Development of the high- power laser, irradiation unit, and collection system

Laser Isotope Separation (LIS)

Absorption spectrum of Ca at 423nm

Ionization = high enrichment coefficient, low productivity

Deflection = moderate enrichment coefficient, high productivity

K Matsuoka et al 2020 J. Phys.: Conf. Ser. 1468 012199

The DEFLECTION method was

applicable for mass production

Laser Isotope Separation (LIS)

Absorption spectrum of Ca at 423nm

Ionization = high enrichment coefficient, low productivity Deflection = moderate enrichment coefficient, high productivity

K Matsuoka et al 2020 J. Phys.: Conf. Ser. 1468 012199

The DEFLECTION method was applicable for mass production 7

Research strategies and requirements

Proof of principle

- Small scale chamber and single laser system
- TOF measurement, deposition meter

Atomic beam system

- Small scale chamber
- Increase the tube number to make a sheet-like atomic beam system
- Collimator effect

Research Center for Nuclear Physics

Production system of ⁴⁸Ca

- Large scale chamber
- 2W laser \times 6 ports $\rightarrow \sim 10$ g/year
- High production rate (1 mol/year)
- Automation system

Institute for Laser Technology Institute of Laser Engineering

Laser system

- Single frequency laser
- Power-scalable laser
- SOA, multiple slave laser
- Long-term operation
- Stable laser system

Research Center for Nuclear Physics

Collection and monitor system

- Collection plate
- Recovery system

Future development

- Stable operation
- Increase the production rate by multiple 6 ports units
- 0.3 g ⁴⁸Ca/day
- Ton scale production

Development of atomic beam system

Development of atomic beam system

Ogawa et al 2022 J. Phys.: Conf. Ser. 2147 012012

Development of the laser system

Development of the laser system EC-LD and FP-LD

< 2MHz rms can be obtained

12

Single frequency can be obtained.

0

Development of production system

• To monitor atomic beam

Deposition meter CRTM9200 + CRTS-4

Crucible, ~1g Ca

#3Slit

50 mm moving range, 1 mm/step

Current experimental setup

Development of production system

Thickness measurement (optical method)

Development of production system

• Find optimal parameters for mass production

Crucible

Newly design vacuum chamber

Newly design vacuum chamber

vacuum chamber (1 mol/year)

Future developments

FY2022, Preparation

- TOF assemble
- Vacuum stability of the main chamber \checkmark
- Monitor and control system development
- <u>Collection material study (in progress)</u>
- FY2023, Installation, and investigation
 - First crucible installation
 - First laser installation (EC-LD + FP-LD, SOA)
 - Investigation of ⁴⁸Ca isotope separation
 - <u>Collection and recovery system installation</u>
 - Monitor and control system improvement
 - Improvement and identification of problems during the long time operation
- FY2024, Production
 - Fully operation of 6 ports
 - Scale up the mass production + automation system
 - Multiple chambers

300 kg/years production plan

Vacuum chamber (30 units 6 ports/chamber 180 laser units

Power/LD => 1 W Optical power => 1.7 kW/port Number of LDs/port = 1700 Total optical power: 51 kW/unit -> ~300kW/30 units

Summary

- LIS for 48Ca is developed to find the cost-effective manner for largescale production toward the study of 0vββ by CANDLES.
- Development of the LIS
 - Atomic beam system (Univ. Fukui)
 - Collimator and slit effect, simulation
 - Power scalable laser system (ILE, ILT)
 - FP-LD + PD-LDs, SOAs
 - Collection and recovery (RCNP)
 - Collection material study
 - Physical or chemical recovery method
 - Large-scale production system (RCNP)
 - Monitor and control systems (RCNP)
- The 1st milestone is the production rate of 1 mol/year by FY2023.