GRAMS実験に向けたLArTPC の開発現状

第3回 地下宇宙若手研究会 2022/11/23-24

> 中曽根太地 早稲田大学 寄田研究室

GRAMS(Gamma-Ray and Anti-Matter Survey)

気球搭載液体アルゴンTPC(LAr-TPC)を用いた宇宙線反粒子、MeV-γ線の観測実験@南極上空

究会

collaborator

Japan

- Hiroshima University
- Kanagawa University
- Osaka University
- RIKEN
- Rikkyo University
- University of Tokyo
- Waseda University

- USA
- Barnard College
- Columbia University
- MIT
 - NASA GSFC Northeastern University
- Northeastern University
 Oak Ridge National Lab
 - UT Arlington

5th collaboration meeting, June 2022

宇宙反粒子の観測

反粒子種	観測器		
反陽子	AMS-02, PAMERA, BESS <mark>GAPS</mark> , <mark>GRAMS</mark>		
反重陽子	AMS-02, BESS <mark>GAPS</mark> , <mark>GRAMS</mark>		
反ヘリウム	AMS-02, BESS, (<mark>GAPS</mark> , <mark>GRAMS</mark>)		
陽電子	AMS-02, PAMERA, DAMPE		

◆ BESS-Polar (超伝導磁石搭載の気球実験)

- 合計30日以上の南極フライト (2004/2007-08年)
- 反陽子 7886事象を観測
- 反重陽子、反ヘリウム(比)の上限値を 算出 → パイオニア的業績を残し終了

◆ AMS-02 (~完璧な粒子検出器をISSに搭載)

→ 運用中 (さらなる結果に期待)

◆ GAPS (積層型Si(Li)検出器+ToF)

・シンチレータ2層+半導体検出器により 励起エキゾチック原子からの特性X線、 対消滅ハドロン群を検出し、粒子識別

D

宇宙反粒子による暗黒物質間接探索

GRAMS実験検出器

- 30日間の長期気球実験
- 2層のToF plastic scintillator
- LArTPC = トラッキングカロリメータ
- 粒子・反粒子識別はGAPSの手法を採用

Proposal configuration

核子数=3

³He

³He

若手研究会

粒子識別手法

● 粒子(質量)識別

・同じ速度βの時、質量によってdE/dXかつ飛跡長が異なる

● 粒子・反粒子識別

GRAMS実験に向けた粒子・反粒子識別試験

2022/11/24

宇宙線µ[±]decay/µ⁻capture識別試験

→*Michel electron*の有無でミューオン崩壊(Decay)/Ar原子捕獲+核子と反応事象(Capture)を識別

LArTPCセットアップ

Trigger Disc. HV OSC. SIS LTARS **Top flange** Anode Grid -1kV e 400V/cm $30 \text{cm} \times 30 \text{cm} \times 30 \text{cm}$ TPC Cathode -13kV **PMT -1100V** (Trigger) 2022/11/24

- 検出器構成:TPC + PMT 1本
- 信号:宇宙線µ粒子
- ノイズ対策
 - エレキ(LTARS2014)を電磁的に遮蔽
 - HV源は一つにまとめる
 - HV源,エレキ,容器のGNDを一致

石于妍允云

10/4-10/7で行われた早稲田地上テスト における最新の結果

FFT等を用いて解析的にノイズを除去 Pedestal RMS=10ADC Count →MIP信号(~40ADC Count/cm) をS/N=4で観測

宇宙線突き抜け事象&崩壊事象について 完璧に飛跡再構成可能

解析の課題

・純度算出

・崩壊パターンの識別アルゴリズム

→今後解析

◆ 宇宙線µ粒子通過Event(400V/cm)

加速器試験へ向けたシミュレーション

- ◆ 将来的には反(重)陽子ビームを用いて粒子・反粒子識別の検証を行う@J-PARC (現在1月のJ-PARCのPACに向けてLolを執筆中)
- ◆ 加速器試験での最適な使用ビーム運動量の シミュレーションを行った
- ◆ シミュレーション条件 ・シミュレーションキット:Geant4 Ver.4.10.07.p01
 - ・TPCサイズ:30cm×30cm×60cm (早稲田地上試験用TPC2個分を想定)
 - ・容器サイズ:Φ100cm, 高さ100cm

2022/11/24

- ・液体アルゴンVolume:Φ100cm, 高さ70cm
- ・使用ビーム:反重陽子・反陽子 (200MeV/c~1100MeV/cの運動量を使用)

Π $\overline{p}, \overline{d}$

11

若手研究会

Π

入射運動量と停止点までの距離の関係

若

横軸:反(重)陽子が原子核捕獲されるまでの距離 縦軸:捕獲事象Event数

粒子	β	Rigidity (MeV/n)	Momentum (MeV/c)	同じβでも
p, p	0.5	150	550	停止までの 距離が変わる
d, d	0.5	150	1100	

同じRigidity(βが同じ)の点+30cm×30cm×60cmのTPC サイズで複数の反陽子の運動量の点も含めてデータ取得

まとめと今後の展望

- ・GRAMS実験は宇宙反粒子探索による暗黒物質間接探索と宇宙MeVガンマ線探索を目的とした 次世代気球実験である
- ・中でも宇宙線反重陽子の観測は0BGでの測定が可能な未知の起源の良いプローブ
- ・10月に行われた早稲田地上試験により信号を確認 →MIP信号を液体アルゴンTPCで実際に検出
- ・加速器試験へ向けて現在プロポーザルを執筆中
 - →反陽子ビームを用いた原子核捕獲事象による粒子反粒子識別の実証を目指す

Back up

液体アルゴンテストスタンド@早稲田

- 液体アルゴン運用システム
 - 温度:沸点 -186 ℃ → 冷凍機を使用
 - 純度:酸素や水が電離電子を吸収
 → 液体フィルター + ガスフィルターを使用

● 光読み出し

- 波長変換材(TPB)蒸着技術を最適化 - 世界最高検出光量12.8[p.e./keVee]達成
- 電子読み出し
 - 2010年にJ-PARC Beam Testで飛跡検出
 - その後の早稲田の液体アルゴン実験では LAr中で電離電子の読み出しは行っていない

<u>30 × 30 × 30 cm TPCを作成</u> ✓ µ粒子がLAr中で止まるイベントの観測 ✓ 電子読み出しのR&Dを行う

宇宙反粒子(反重陽子)観測に向けた開発課題

粒子	フラックス (m²sr/s/(GeV/n))-1	BG reduction
陽子/重陽子 (一次宇宙線)	10 ³	10 ⁹
反陽子 (BESS/AMS-02)	10-2	104
反重陽子 (GRAMS目標)	10-6	1

- ◆ LArTPC+ToFの組み合わせによる 背景事象除去能力の実証
- ◆ LArTPCによる原子核捕獲事象を用いた 粒子・反粒子の識別法の実証
- →早稲田地上でのLArTPCによる宇宙線 μ^+/μ^- 識別試験 →反(重)陽子ビームを用いた試験

ToF+dE/dXによる粒子(質量)識別

● 同じ速度βの時、入射粒子の質量によって
 <u>dE/dXかつ飛跡長</u>が異なる
 → 入射粒子の質量を識別可能

outer-ToF	p	d
inner-ToF	same eta	
Stopped	LAr-	Length

粒子	β	Rigidity (MeV/n)	Kinetic Energy (MeV)	Momentum (MeV/c)
p, p	0.5	150	150	570
d, d	0.5	150	300	1140

粒子識別手法

- 1. ToF scintillator
 - *β*測定
- 2. ionization/excitation of LAr
 - tracking $\rightarrow dE/dX$
- 3. Ar原子に捕獲
 - → 脱励起 w/特性X線
- 4. Ar核子と対消滅→ハドロン生成

反陽子・反重陽子ビーム試験に向けたシミュレーション

粒子	β	Rigidity (MeV/n)	Kinetic Energy (MeV)	Momentum (MeV/c)
p, p	0.5	150	150	570
d, d	0.5	150	300	1140

30cm×30cm×60cmのTPCサイズで反陽子の複数の 運動量の点も含めてデータ取得し、Capture & Inelasticのレートを実測予定

Excess (?) in cosmic ray measurement

page 21/30