高純度Nal(TI)による PICOLON宇宙暗黒物質探索実験の現状

Tokushima Univ. K.Kotera (M2)

		Out Line	
1.	宇宙暗黒物質	4. 結果と考察	
2.	PICOLON計画	5. まとめ	
3.	実験のセットアップと解析		

宇宙暗黒物質

- 宇宙暗黒物質の探索
- 宇宙物理の背景
 - 宇宙の大規模構造の成因.
 - 全宇宙の成分のうち26.4 %を占める.
- <u>素粒子物理の背景</u>
 - 標準模型は不十分.


```
→未知の素粒子発見は非常に重要.
```


R.L. Workman et al. (Particle Data Group)Prog. Theor. Exp. Phys. 2022, 083C01 (2022)より作成

世界で行われている宇宙暗黒物質探索

- WIMP探索
 - 最も重要な候補の一つ.
 - 軽い(Sub-GeVオーダー)のWIMPも提唱されている.
- 探索は非常に困難
 - 低エネルギー:数keV以下かつ、
 低バックグラウンド: 10⁻⁴~10⁻⁶ Event/(day·kg·keV).
- XENONnT
 - 8.5トンの液体Xe.
 Phys. Rev. Lett. 129,161805 (2022)
 - 世界で最も高感度な検出器.
 - 宇宙暗黒物質の発見は未だされていない.

世界で行われている宇宙暗黒物質探索

- Nal(TI)は大混乱!
- DAMA/LIBRA: いまだに主張やめず.
 - 250 kg Nal(TI)検出器.
 - 未知の季節変動を主張.(驚異の11.9 σ C.L.!!)

- DAMA/LIBRAグループの直接検証.
 - ANAIS: 季節変動を否定.
 - COSINE: 逆位相の季節変動を主張.

¹⁰ Aug. 2022 arXiv:2208.05158

- Nal(TI)全体の共通点
 - Nal(TI)結晶のバックグラウンド濃度が高い.
 - Nal(TI)中で最高感度であるDAMA/LIBRAでもXenonより6桁上.

PICOLON計画

- PICOLON: Pure Inorganic Crystal Observatory for Low-energy Neut(ra)lino.
 - 目標
 - 1. 高純度Nal(TI)結晶を用いた 宇宙暗黒物質探索.
 - 2. DAMA/LIBRA実験による 未知の季節変動の検証.
 - 現状
 - Ingot #85 (2020)が結晶純化に成功.
 論文にて報告済み(K.Fushimi et al. PTEP 2021 043F01)

純化手法の再現性を確認.

→同じ純化手法で新結晶Ingot #94を作成.

	Ingot #85 (2020)
Crystal size	$7.62\phi \times 7.62 \text{ cm}^3$
²³² Th [µBq/kg]	0.3 ± 0.5
²²⁶ Ra [µBq/kg]	1.0 ± 0.4
²¹⁰ Po [µBq/kg]	< 5.7

Nal(TI)のバックグラウンド源

• 主なバックグラウンド源: natK, Th-chain, U-chain.

Our target value

Radioactive impurities	Target purities
^{nat} K (⁴⁰ K = 0.017 %)	< 600 µBq/kg
Th-series ⁽²³² Th)	<16 µBq/kg
U-series Middle (²²⁶ Ra)	$< 120 \ \mu Bq/kg$
U-series Bottom(²¹⁰ Pb)	< 50 µBq/kg

⁴⁰K and ²¹⁰Pb: 深刻なBG源となる

DAMA: NIM A592 (2008) 297. ANAIS,SABRE: Talk poster in TAUP2021. COSINE: Talk poster in TAUP2021.

Nal(TI)を用いた4つの探索グループにおけるNal(TI)結晶のバックグラウンド濃度と我々の目標値

		COSINE	ANAIS	SABRE	PICOLON	
	DAIVIA				Ingot#85	goal
^{nat} K [µBq/kg]	< 600	< 1060	545~1200	120	<600	600
²³² Th [µBq/kg]	2~31	2.5~35	~4	0.8	0.3 ± 0.5	10
²²⁶ Ra [µBq/kg]	8.7~124	11~451	~10	5	1.0 ± 0.4	10
²¹⁰ Pb [µBq/kg]	5~30	10~3000	740~3150	360	< 5.7	50

The DAMA/LIBRAグループの結晶は世界最高純度!!

実験のセットアップ

Ingot #85 & Ingot #94 →それぞれ検出器を作成して別々のシールドへインストール.
 Low BG PMT: R11065-20

Ingot#94 (crystal)

Detector(#94)

Shield (# 94)

- 1. 2つの検出器からDAQ triggerを生成.
- 2. 3つの線源(133Ba, 137Cs, 60Co)でエネルギー較正.
- 3. 約1か月バックグラウンド測定した.

データ解析:α-ray

- α線イベントを抽出
- 波形弁別法(Pulse Shape Discrimination: PSD)を利用.

データ解析: α-ray

α線イベントの抽出.

PSD Ratio for Electron equivalent energy.

Ingot #94: 28.2596 day × 1.344 kg

データ解析: α-ray

- *α*線イベントの抽出.
- 抽出の条件
 - PSDに対する閾値: *R*_{PSD} < 0.52.
 - エネルギー領域に対する閾値: 1200~6000 keVee.
 - 波形弁別法による抽出の能力: 5.52 σ.

PSD Ratio for Electron equivalent energy.

Energy spectrum after PSD.

Ingot #94: 28.2596 day × 1.344 kg

データ解析: 低エネルギー域(≤ 100 keV_{ee})

• 低エネルギー域(≤ 100 keV_{ee})ではPMT由来のノイズ信号が混入.

→2つのノイズ除去手法を利用.

- Single noise reduction:
 - 既存の除去手法.
 - ノイズ信号とNal(TI)信号の波形の違いを利用する.

データ解析: 低エネルギー域(≤ 100 keV_{ee})

PSDを用いたノイズ除去

Electron equivalent energy [keVee]

解析結果: α-ray

• 5つの明確なピークを確認

3 keV_{ee} 以下の残存ノイズについて

• ベースラインの揺らぎによりPSDが変動

→ノイズイベントがNal(TI)イベントと混ざるためノイズ除去効率が低下する。

• 機械学習を利用したノイズ除去を行いたい(進行中!!)

解	析結果:低エネ	ルギ	一域	
•	3つのピークを確認(¹²⁵ Ⅰ、	126 	²¹⁰ Pb).	

RI	Energy	<i>T</i> _{1/2}
¹²⁶ I	35 keV _{ee} (x – ray)	12.5d
²¹⁰ Pb	46.5 keV _{ee} (γ – ray)	22.2y
¹²⁵ I	64 keV _{ee} (γ – ray)	59.4d

¹²⁵I, ¹²⁶I:時間経過によるBG濃度の減少を確認

解析結果: 2-6 keV_{ee}のバックグラウンド濃度

- 探索に必要な2-6 keV_{ee}におけるBG濃度を計算
 - 最初の5.39 日間(Real Time)のデータを使用.

Spectral comparison

DAMA/LIBRAの濃度の2~5倍程度

Ingot#85に続き、高純度なNal(TI)結晶の作成に成功.
 →結晶の純化手法の再現性も確認.

	DAMA/LIBRA (NIM A592 (2008) 297.)	Ingot #85 (2020)	Ingot #94 (This work)
Crystal size	$10.2 \times 10.2 \times 25.4 \text{ cm}^3$	$7.62\phi \times$	7.62 cm ³
²³² Th [µBq/kg]	2~31	0.3 ± 0.5	4.6 ± 1.2
²²⁶ Ra [µBq/kg]	8.7~124	1.0 ± 0.4	8.7 ± 1.5
²¹⁰ Po [µBq/kg]	5~30	< 5.7	28 ± 5

- Nal(TI)結晶を用いた高感度な宇宙暗黒物質探索装置の建設が可能に!
- BG Rate: 約 2 ~ 5 Events/(day · kg · keV_{ee}) (90 % C.L., 4-6 keV_{ee})

区間 [keV _{ee}]	BG濃度(90 % C.L.) Events/(day · kg · keV _{ee})
2~6	3.42 ± 0.42
2~4	5.11 ± 0.69
4~6	1.73 ± 0.59

• 残る検出器中の主なバックグラウンド源: PMT

現在論文執筆中!

Purification of Nal

• 再結晶+イオン交換樹脂によるバックグラウンド源の除去

- 再結晶
 - 1. 100 °CのNal(TI)飽和水溶液を作成.
 - 2. ゆっくり冷却しカリウム(KI)を除去.
 - 3. ろ過により析出したNal結晶を取り出した.
- イオン交換樹脂
 - 鉛に有効な2種類のイオン交換樹脂("C", "D")を使用.
 ※窒素ガス入のグローブボックス下にて作業.

Energy calibration

• Ingot #94

--- :Calibration Boundary

DAQ

• Both signals of two detectors make a DAQ trigger.

PSD ability

PSD ability

Data Analysis(Low Energy region)

• PSD Noise reduction.

We set the PSD reduction threshold to 0.64.

Background

- The evidence for our present NaI(TI) contains no ⁴⁰K.
 - Ingot #68 is a clear excess due to the beta-ray from ⁴⁰K

Dark Matter Experiments in the World

- Xenon1T experiment
 - Target: 1-ton liquid Xe
 - The most sensitive detector in the world.

- DAMA/LIBRA experiment
 - Target: 250 kg NaI(TI)
 - They report unknown annual modulation (11.9 σ C.L. !!)

COSINE & ANAIS experiments

NUCL. PHYS. AT. ENERGY 19 (2018) 307-325

NEWS-G (2017)

DAMIC (2020

10

WIMP Mass [GeV/c²]

10-36

section [cm²] 10⁻³⁸

SS 10⁻⁴²

10⁻⁴⁴ 10⁻⁴⁶ 10⁻⁴⁸ 10⁻⁴⁸

10-50

CDMSLite (2018

DarkSide-50 (2018

XENON1T (2019

most sensitive

- Direct verification of DAMA/LIBRA.
 - They ruled out the possibility of annual modulation.
 - BG of Nal(TI) crystals is high and direct verification is insufficient. ٠
 - annual modulation with opposite phase.(arXiv:2208.05158)

 10^{0}

 10^{-2} section [pb]

10-4

 10^{-6}

- 10⁻⁸ HW - 10⁻¹⁰ HW - 10⁻

1030-14

perCDMS (2017)

10²

R.L. Workman et al. (Particle Data Group)

Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

DEAP-3600

Dark Matter

- Dark Matter (DM)
 - 20% of the total mass energy comes from DM.
 - It cannot be observed optically.
- Cold Dark Matter(CDM, e.g. **WIMP** and **Axion**) is the main component of DM.

