不活性気体のナノ細孔性カーボンへの吸着

金子克美 信州大学 環境・エネルギー材料科学研究所

第1回地下素核研究研究会 2014年8月23,24日 大阪大学 豊中キャンパス:シグマホール

1°

Molecules in Atmosphere "Treasure of Human"

	content/vol. %	structure	size
N ₂	78		0.36 nm
02	21		0.34 nm
H ₂ O	< 4		0.32 nm
Ar	0.9	Ar	0.33 nm
CO ₂	0.0036		0.38 nm
CH ₄	0.00017		0.37 nm
H_2	0.00005	HH	0.29 nm

Supercritical Gases and Vapors

Inert Gases

	LJ σ/nm	LJ e/K	T _b /K	T _c /K	Quantum
He	0.257	10.8	4.4	5.195	O
Ne	0.275	35.8	27.3	44.40	Δ
Ar	0.34	122	87.4	150.7	X
Kr	0.359	183	121.5	209.4	X
Xe	0.396	217	161.7	289.7	X
Rn	0.436	283	202.2	377	X

J.G. Hirshfelder et al. Molecular Theory of Gases and Molecules, John Wiley& Sons, 1954

Critical Temperature of Representative Gases

gas	T _b /K	T _c / K	P _c /Pa	σ _{ff} /nm	$\mathrm{e}_{\mathrm{ff}}/\mathrm{k}_{\mathrm{B}}$	multipole moment	magnetism
H ₂	20.3	33.0	1.29	0.292	38.0	<i>qu</i> +2.1 × 10 ⁻⁴⁰	dia
O ₂	90.2	154.6	5.04	0.338	126.3	<i>qu</i> -1.33×10 ⁻⁴⁰	para
N ₂	77.3	126.2	3.39	0.363	104.2	<i>qu</i> -4.90×10 ⁻⁴⁰	dia
NO	121.4	180	6.48	0.347	119	<i>di</i> 0 158×10 ⁻¹	<i>para</i>
CO	81.6	132.9	3.50	0.359	110	<i>di</i> 0 112×10-	<i>dia</i> 30
CO ₂	194.7	304.2	7.48	0.376	245.3	<i>qu</i> -14.9×10 ⁻⁴⁰	<i>dia</i>
CH_4	111.6	190.5	4.60	0.372	161.3	OC	dia

Four categories of gas-solid interaction Storage-related concepts

	molecule	solid (not surface)	
Physical adsorption	none	none	
Chemisorption	change	none	
Absorption	none	change	
Occlusion*	change	change	

*(narrow concept of storage)

Kaneko's classification

Chemisorption, Occlusion, Absorption

Physical Adsorption and Chemisorption

	Phys. adsorption	Chemisorption
Attractive interaction	Dispersion nonspecific	Chem. bonding specific
Adsorption rate	Large	Small
Adsorption capacity	Large	< monolayer cap.
Reversibility	Reversible	Irreversible
Temp. dependence	Lower temp. vapors	Higher temp. supercritical gases + vapors

Interaction of an Inert Gas with Solid

Only physical adsorption is available

Removal of low concentrated inert gases

Pores whose width is less than 1 nm

A deep interaction potential well

Cylindrical pores > Slit pores (less accessible) (more accessible)

Adsorption of a Molecule on Graphite

Why is a molecule adsorbed on solid surface ?

van der Waals force attracts the molecules (dispersion interaction)

Short-range force: van der Waal interaction

Adsorption on Graphite Surface

Adsorption isotherm

Layer-by-layer adsorption

Nanopores

Micropores w<2nm

Slit-shaped pores Activated carbon

Cylindrical pores Single wall carbon nanotube (SWCNT)

Stabilization Change of a Molecule in Graphene Pore

1 nm order pores: Remarkably high density phase in pores

Adsorption of N₂ in 1.2 nm- Slit Pore

Theoretical isotherm

Images

Model of pores of activated carbon

Basal Plane of Graphite

Carbon hexagon network structure

High atomic density

The strongest interaction potential per unit weight

Single Wall Carbon Nanotube

Ideal Surface Solids

All carbon atoms facing internal and external phases

Super surface area

2630 m²/g

Bi-surfaces: Surface Solids

Nanoenvironment Sensitive Nature of Single Wall Carbons

Carbon Nanotube Spaces Show an Intensive Confinement Effect Deep Interaction Potential Wells: N₂-SWCNT

Carbons of High Surface Area

8

Nanoporous Carbon Has Several Merits

	zeolite	carbon	PCP	silica
Electrical conductivity	×	0	×	×
Thermal conductivity	×	0	×	×
Thermal stability	0	0	\bigtriangleup	0
Anti-oxidation property	0	×	×	0
Hydrophobicity	0	0	×	×
lon exchangeability	0	×	×	×
Pore structure	Micro pore	Micro- and mesopore	micropore	mesopore
Uniform porosity	0	Δ	0	0
Tunability of pore size	0	\bigtriangleup	0	0
high surface area (>1000 m ² g ⁻¹)	×	0	0	0

Intensive Confinement Effect

Superhigh pressure compression effect

High Pressure Compression Effect

In Slit-shaped Nanospaces

High pressure (>20 MPa) gas phase reaction occurs below 0.1 MPa

K. Kaneko et al. J. Chem. Phys., 87, 776 (1987). NO dimers

K.Kaneko et al, J. Phys. Chem. **95**,9955 (1991) $3(NO)_2 = 2N_2O + (NO_2)_2$ 20MPa

K. Hashimoto, A.Fujishima et al, *J.Electrochem.* Soc. **147**, 3393 (2000). Exp. Study

Electrochemical reduction of CO₂ to CO under 10MPa

Theoretical studies

K.E.Gubbins et al, *J.Chem.Phys.* **125**, 084711(2006).

Phys. Chem. Chem. Phys.13 (2011) 17163. Micro. Meso. Mater. 154 (2012)19.

Metallic Sulfur Is formed under > 90 GPa in Bulk

90 GPa

Insulator

@ambient pressure

Metallic phase of sulfur

R. Steudel Ed., "Elemental Sulfur and Sulfur-Rich Compounds I" (Springer, 2003).

zigzag chain

Highly conductive 1D Sulfur chain inside CNT

T. Fujimori et al, Nature Comm. (2013)

Doping of Sulfur in Tube Spaces

Synchrotron XRD of Atomically 1D-S

Resistivity (Ω cm)

Thermal Stability of 1 D S-Chain

Xe Adsorption on Porous Carbon

Activated carbon fiber 活性炭素繊維

Graphitic nanoscale slit pores

W tunable0.5 ---- 1.3 nm

Adsorption Isotherms of Xe on ACFs at 300 K

M.Aoshima et al, J. Colloid Interface Sci. 2000,222, 1790183.

Description of Supercritical Xe Adsorption

Xe Adsorption Isotherms on Graphite Slit Pore at 300 K

Xe Cluster Formation in Pores

Removal of Rn gas

Adsorption studies on Rn in the literature

Effect of Humidity on Rn Adsorption on AC

How can we remove Rn?

Removal of Rn gas

Physical adsorption

 $T_{b} = 202 \text{ K}$ $T_{c} = 377 \text{ K}$

Adsorption at 202 K ~ 377 K 室温附近で可能

Representative physical adsorption

Porous solids

Larger pore volume and surface area Smaller pore width

> > 0.44 nm (> 0.7nm 1.5 σ (Rn)) to avoid the entrance blocking

Issues in Rn Removal

- **Difficulty in experimental studies**
- **Extremely low concentrated Rn gas in atmosphere**
 - $O_2 N_2$ Ar $CO_2 H_2O$ Others
 - Selective adsorptivity of Rn for Rn-CO₂ mixed gas
 - **Adsorption engineering**
 - **1** Pre-removal of condensable gases H_2O
 - Avoiding entrance blocking
 - 2. Selective adsorption removal of Ra around 200 K

without blocking by CO₂

(Pre-removal of CO_2 with amino-modified porous solids, w > 2nm?)

Critical Temperature of Representative Gases

gas	T _b /K	T _c / K	P _c /Pa	σ _{ff} /nm	$ m \epsilon_{ff}$ /k _B	multipole moment	magnetism
H ₂	20.3	33.0	1.29	0.292	38.0	<i>qu</i> +2.1 × 10 ⁻⁴⁰	dia
O ₂	90.2	154.6	5.04	0.338	126.3	<i>qu</i> -1.33×10 ⁻⁴⁰	para
N_2	77.3	126.2	3.39	0.363	104.2	<i>qu</i> -4.90×10 ⁻⁴⁰	dia
NO	121.4	180	6.48	0.347	119	<i>di</i> 0.158×10 ⁻	<i>para</i> -30
CO	81.6	132.9	3.50	0.359	110	<i>di</i> 0.112×10 ⁻	<i>dia</i> 30
CO ₂	194.7	304.2	7.48	0.376	245.3	<i>qu</i> -14.9×10 ⁻⁴	0 0
CH ₄	111.6	190.5	4.60	0.372	161.3	OC	dia
Rn	202	377					

Promising Adsorbents ?

Nanoporous carbons ACFs

Zeolites or Silica gels Water

Modified porous solids CO₂

High Surface Area Graphene-based Carbon

S. Wang et al, Carbon (2014)

Acknowledgements

Grant-in-Aid for Scientific Research A (2012-2014)

New chemistry with edge-enriched carbons

JST CREST Project (2013-2019)

Quantum molecular sieving of isotope molecules

Spring8: Japan Synchrotron Radiation Research Institute; BL02B2 beam line

Thank you

Highly Dense NO-dimer Formation

carbon micropore

Supercritical NO transforms into vapor with dimerization (NO)₂ NO adsorption amount > **30 %** of adsorbent weight *Carbon* (1986) *J. Chem. Phys.* (1987)

KI Solid Phase Trans ion at 1.9 GPa occurs in CNT Spaces below 0.1 MPa

How about KI assemblies in carbon nanospaces?

Single Wall Carbon Nanohorn

S. lijima, M. Yudasaka et al, Chem. Phys. Lett. (1996) **Merits Chemically pure** (no catalyst) **1g-order samples Tuning of** nanowindow-size

KI doping 1073 K. < 0.1 MPa

Single Wall Carbon Nanohorn (SWCNH)

TEM Images of KI on SWCNH B2 Phase

Cross-section

Simulated image (B2)

>1.9GPa

a, b ≈ 3.53 Å c ≈ 3.82 Å

X-ray Diffraction Patterns

Super high pressure phase is stabilized in nanotube spaces

B1 NaCl type

B2 CsCl type

Tetragonal

The structure of high-pressure phase can be formed in nanospaces below 0.1 MPa.

Urita et al, J. Amer.Chem. Soc.133, 10344 (2011)