

A01班:大型液体シンチレータ検出器での ニュートリノのマヨラナ性と世代数の研究 KamLAND-Zen

東北大学ニュートリノ科学研究センター 井上邦雄

http://www.awa.tohoku.ac.jp/

新学術領域「宇宙の歴史をひもとく地下素粒子原子核研究」第1回研究会 2014年8月23日 大阪大学シグマホール

ガリウム太陽ニュートリノ観測装置 でのニュートリノ線源による実験

1eV程度のステライルニュートリノのヒント

IsoDAR

サイクロトロン

DTジェネレータ

コッククロフト

 H_{2}^{+}

Proton beam

⁹Be target

surrounded

by D₂O

p(60MeV)+⁹Be→⁸Li+2p +中性子多数 n+⁷Li(遮蔽材)→⁸Li ⁸Li \rightarrow ⁸Be+e⁻+ $\overline{\nu}_{e}$ 2.6×10²²/year

16万事象/年

マヨラナ性が確認できたら、

- 宇宙・素粒子の大問題解明に貢献 ○軽いニュートリノ質量 Seesaw機構 ○宇宙物質優勢 Leptogenesis機構 ○暗黒物質 Asymmetric dark matter, 輻射Seesaw機構 ^{第4世代ニュートリノ?}
- 輻射シーソー模型の例 ϕ_{ρ}^{0} ϕ_{ρ}^{0} ϕ_{ρ}^{0} even ν, ϕ_{ρ}^{0} ν_{L} N_R N_L ν_{R} ν_{L} ν_{L} N_R N_L ν_{R} \uparrow DM

Straight forward method to verify Majorana nature

小質量(eV)、大エネルギー(MeV)のため、ヘリシティー反転は起きにくい。 断面積自体も非常に小さい。

幸い自然は親切で、

E٨

β

z-2

7-1

Z

z+1

z+2

数十の原子核が二重β崩壊する。

N.Z=0,0

N.Z=e,e

2つのニュートリノが、フェムト メートルの空間に作られる。

n

一方が他方を追

い越す事も可能

1930 light neutral particle (W.Pauli) 1933 neutrino, beta decay theory (E.Fermi) 1935 double beta decay (M.Goeppert-Mayer) 1937 Majorana neutrino (E.Majorana)

1939 neutrino-less double beta decay (W.Farry)

● 最近の宇宙観測では有限で探索可能なニュートリノ質量を示唆するものがある。

● ニュートリノ振動でも逆階層構造を好むものがある。

いつ見つかっても不思議でない。

● 最先端の感度を維持し続け、まず発見をめざすことが重要。
 ○ 現在は確実な技術でスケーラビリティーを確保

● 0 ν 2 β 発見が無くても価値の高いプロジェクトとするためには、
 ○ 逆階層構造をカバーする感度が重要。

- ・宇宙観測、ニュートリノ振動と矛盾したら → ニュートリノはディラック
- ・ニュートリノはマヨラナと信じれば → 消去法で標準階層構造

○ 多目的にし、堅い成果も用意する。

地球 ν 観測、第4世代 ν 探索、太陽 ν 観測、暗黒物質探索など

● 0 ν 2 β 発見が発見されたなら、

○ 高精度測定

○ 他核種での測定 → 核行列要素の不定性低減、背景物理の選別 技術の多様性

○ トラックの測定 → 背景物理の選別 技術の多様性

○ 宇宙観測やβ崩壊との統合解析 → 背景物理の選別、マヨラナCP測定も視野に

comparison of double beta decay nuclei

Nucleas	$T_{1/2}^{0\nu}(50{\rm meV})$	$T_{1/2}^{2\nu}$ measured (year)	Nat. Abundance (%)	Q-value (keV)				
⁴⁸ Ca→ ⁴⁸ Ti		$(4.2^{+2.1}, 1.0) \times 10^{19}$	0.19	4271	max. O, fast 2v			
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.86×10^{27}	$(1.5\pm0.1) \times 10^{21}$	7.8	2039	semiconductor			
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	2.44×10^{26}	$(0.92\pm0.07) \times 10^{20}$	9.2	2995				
⁹⁶ Zr→ ⁹⁶ Mo	0.98×10^{27}	$(2.0\pm0.3) \times 10^{19}$	2.8	3351				
$^{100}Mo \rightarrow ^{100}Ru$	2.37×10^{26}	$(7.1\pm0.4) \times 10^{18}$	9.6	3034	fast 2v			
$^{116}Cd \rightarrow ^{116}Sn$	2.86×10^{26}	$(3.0\pm0.2) \times 10^{19}$	7.5	2805				
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	4.53×10 ²⁷	$(2.5\pm0.3) \times 10^{24}$	31.7	867				
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2.16×10^{26}	$(0.9\pm0.1) \times 10^{21}$	34.5	2529	large nat. abundance			
¹³⁶ Xe→ ¹³⁶ Ba	4.55×10^{26}	$(2.3\pm0.1) \times 10^{21}$	8.9	2476	slow 2v, rare gas			
$^{150}Nd \rightarrow ^{150}Sm$	2.23×10^{25}	$(7.8\pm0.6) \times 10^{18}$	5.6	3367	0v, fast $2v$			
$0 \nu \beta \beta$ (5%FWHM) (normalized to 10 ⁻⁶)								
$2 \cdot 0 - 2 \nu$ BGはエネルキー分解能の約5.8								
1.5 人 「 $~~$ 人 $~~$ $~~$ $~~$ $~~$ $~~$ $~~$ $~$								
│								
$1.0 - \int 2\nu\beta\beta$ $0\nu\beta\beta$ (5%FWHM)								
$(normalized to 1)$ (normalized to 10^{-2})								
$ T^{0\nu}/T^{2\nu}$ 比が小さく、エネルギー								
0.0 +	0.4 0.6	0.8 1.0 分	, 解能に対する要	要請がゆる	るい。			

KamLAND-Zen

Zero neutrino double beta decay search

~320kg 90% 同位体濃縮¹³⁶Xe を導入 現在380kg、将来600kg~1000kgに拡張

KamLANDを使うメリット

- 稼働中の装置
 - → 相対的に低コストで迅速に開始可能
- 巨大かつ清浄 (1200m³, U: 3.5x10⁻¹⁸g/g, Th: 5.2x10⁻¹⁷)
 - → 外部の放射線が問題にならない
 - (Xe とミニバルーンには高清浄が必要)
- (必要時は低コストで)Xe含有液体シンチレータの純化、
 ミニバルーンの換装が可能
 - → 拡大も容易 (数トンのXeにも対応可能)
- β , γ を漏らさず観測 → バックグラウンド識別が相対的に容易
- 反ニュートリノ観測を並行できる
 - → 原子炉停止時の良質の地球ニュートリノデータ

ミニバルーン試作とプールでの導入リハーサル

25ミクロン厚ナイロン6での試作

水深8mのプールで導入テスト

バルーン吊下部

80ミクロン厚ポリエチレンでの試作 ミニバルーンの構造を決定

導入、膨張、液の入れ替え方法を確立

キセノン取り扱い装置

キセノン溶解・密度制御装置

ドーム内クリーンルーム

新空洞・LS貯蔵タンク

本番用ミニバルーン製作

●クラス1スーパークリーンルームでの作業

(class 1 = 0.5ミクロン粒子が1立方フィートあたり1個以下

関いチ Vectran 紐につ 3 ながった12本の ナイロンベルト で吊り下げ テフロン荷 (t=5、2001 ケーブルタイ(1 直管 ム部分(~6m) 3.08m

黒色フィルムを突き抜けるバルーン

Measurement of the $2\nu 2\beta$ half life

DAMA (2002) 液体キセノンシンチレータ

 $T^{2\nu}_{1/2}$ > 1.0 ×10²² years at 90% CL

Phys.Lett.B546,23(2002)

KamLAND-Zen (2012) キセノン含有液体シンチレータ

 $T^{2\nu}_{1/2}=2.30\pm0.02$ (stat) ±0.12 (syst) $\times10^{21}$ years

Phys.Rev.C86,021601(R)(2012)

Background situation

Peak fit with 0ν signal

Peak position is different from that of expected 0ν . 0ν only is rejected at more than 8σ level.

放射性不純物

2つの可能性:

● <u>放射性不純物</u> なら長寿命なはず。

● <u>宇宙線による原子核破砕</u> ならミューオンとの相関がみえるはず。

thousands of millions of ENSDFの全原子核の崩壊を調査。 http://ie.lbl.gov/databases/ensdfserve.html

100秒以下の時間相関を <0.007 /ton・day (90% CL). → small

100秒~30日の時間相関を持つものは、A,Zの近い原子核の エネルギースペクトルを調査して制限 → negligible

核反応 $(\alpha, \gamma), (\alpha, \alpha, \gamma), (n, \gamma)$ はどれも断面積が小さい。 → negligible

30日以上の寿命で 0 v に近いピークを作るものは、 4 つの候補。 ^{110m}Ag (T_{1/2}=250d), ²⁰⁸Bi(3.68x10⁵y), ⁸⁸Y(107d), ⁶⁰Co(5.27y)

Limit on the $0\nu 2\beta$ half life

(χ² at 2.2~3.0MeV)

		χ² 112日のデータ			
	simul. fit	11.6			
ENSDFデー	0v+ ^{110m} Ag	13.1			
タベースの全	0v+ ²⁰⁸ Bi	22.7 🛆			
探索でこれ ら4各種のみ	0ν+ ⁸⁸ Υ	22.2 🛆			
が、BG候補	0v+ ⁶⁰ Co	82.9 🗙			
	Ov only	85.0 ×			
BGは ^{110m} Ag らしい。					

KamLAND-Zen status 89.5kg-yr Phys.Rev.Lett, 110, 062502 (2013)

^{110m}Ag Background Reduction

Fit to Energy Spectrum for $2\nu\beta\beta$

136 Xe $0\nu\beta\beta$ Decay Half-life

combined result (Phase 1 + 2)

Limits on ¹³⁶Xe half-life and effective neutrino mass are improved

世界の競争状況

Nucleus	Experiment	T ^{0v} 1/2 limit (yr) @ 90% C.L.	<m<sub>ββ> (eV)</m<sub>
⁴⁸ Ca → ⁴⁸ Ti	ELEGANT VI	$> 5.8 \times 10^{22}$	< 3.5-22
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	GERDA	$> 2.1 \times 10^{25}$	< 0.19-0.30*
⁸² Se → ⁸² Kr	NEMO-3	$> 3.2 \times 10^{23}$	< 0.8-1.4
⁹⁶ Zr → ⁹⁶ Mo	NEMO-3	> 9.2 × 10 ²¹	< 9.3-13.7
$^{100}Mo \rightarrow ^{100}Ru$	NEMO-3	$> 1.0 \times 10^{24}$	< 0.4-0.7
$^{116}Cd \rightarrow ^{116}Sn$	Solotvina	$> 1.7 \times 10^{23}$	< 1.2-2.2
¹²⁸ Te→ ¹²⁸ Xe	(Geo chemical)	$> 7.7 \times 10^{24}$	< 0.7-1.2
¹³⁰ Te→ ¹³⁰ Xe	CUORICINO	$> 2.8 \times 10^{24}$	< 0.44-0.81
$^{136}Xe \rightarrow ^{136}Ba$	KamLAND-Zen	> 2.6 × 10 ²⁵	< 0.14-0.28 preliminary
	EXO-200	> 1.1 × 10 ²⁵	<0.21-0.43
$^{150}Nd \rightarrow ^{150}Sm$	NEMO-3	> 1.8 × 10 ²²	< 4.0-6.3

現在世界最高感度を更新中!

を期待!!

いつ発見しても不思議でない。 発見に最も近いのはカムランド禅

Ø

V

極低放射能フィルム

0

Ø

4

○集光ミラー

○高発光LS

○キセノン高濃度化

○発光フィルム

lens596

ニュートリノ実験は難しいが、、

1930 Pauli 軽い中性フェルミオンを導入 (理論予測された最初の粒子)

1956 Reines, Cowan ニュートリノの発見 (Savannah river原子炉)

1957 Pontecorvo $\nu \leftrightarrow \overline{\nu}$ の可能性を指摘 1962 Maki, Nakagawa, Sakata フレーバー混合の模型

1998 Super-Kamiokande 大気ニュートリノ振動の証拠

1937 Majorana $\nu = \overline{\nu}$ の表現を発見 1939 Furry ニュートリノレス二重β崩壊を指摘

201X KOOOOOOOO ニュートリノレスニ重β崩壊の発見、マヨラナ性を証明 したい。 ご支援よろしくお願いします。m()m