重力波、ニュートリノの同時観測による 超新星爆発メカニズム解明に向けた研究

第一回超新星ニュートリノ研究会@東京理科大学 2015/03/17 大阪市立大学 横澤孝章 KAGRA

- Gravitational Wave(GW) detectors
 - KAGRA status
 - Candidate GW sources
- Analysis strategy from Supernova signal
 - TF clustering
 - Multi detector coherent network analysis
 - With External trigger
- Messages from Supernova
 - Multi-messenger astronomy
 - Our latest results

GW and Laser interferometer

- Einstein Equation For a small perturbation "h", a wave equation is derived $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu} \qquad g_{\mu\nu} = \eta_{\mu\nu} + \frac{h_{\mu\nu}}{\rho \text{erturbation}} \left(\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)h_{\mu\nu} = 0$ Two polarization : + mode and × mode • Two polarization : + mode and × mode $h_{+} = h \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad h_{\times} = h \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad + \text{mode} \quad - \text{mode} \quad$ • Energy of GW Laser interferometer $I_{\mu\nu} = \int \rho(\vec{r}) (x_{\mu}x_{\nu} - \frac{1}{3}\delta_{\mu\nu}r^2) d^3x$ Fabry-perot Michelson $\mathcal{L}_{gw} = \int_{r \to \infty} T_i^{0gw} n^i r^2 d\Omega$ interferometer $=\frac{G}{5c^5}<\ddot{I}_{\mu\nu}\ddot{I}^{\mu\nu}>$ Observe the optics of $h_{\mu\nu} \simeq \frac{2G}{rc^4} \ddot{I}_{\mu\nu}$ interface
 - Mass quadruple moment axis asymmetry
- Direction dependence

GW and Laser interferometer

0.6

0.5

Detector sensitivity curve

Horizontal axis : Frequency[Hz] Vertical axis : [1/rHz] strain equivalent noise spectrum

Best sensitivity : a few 10^{-24} @~100Hz

KAGRA : detector overview

2nd generation GW detector in Japan

- Large-scale Detector arm length : 3km each
- Cryogenic interferometer
 - Mirror temperature : 20K
- Underground site Kamioka Mine

KAGRA : installation

Beam duct :

Cryostat :

Laser booth :

Digital control room : Stack Vibration :

Geophysical interferometer :

I went to inside mine at February : Computer installation

Pictures by T.Uchiyama

KAGRA : data analysis group

Chief: H.Tagoshi Sub-chiefs: Y.Itoh, H.Takahashi Core members: N.Kanda, K.Oohara, K.Hayama

Osaka Univ : H. Tagoshi, K.Ueno, T.Narikawa Osaka City Univ : N.Kanda, K.Hayama, T.Yokozawa, H.Yuzurihara, T.Yamamoto, K.Tanaka, M. Asano, M. Toritani, T. Arima, A. Miyamoto Univ Tokyo : Y.Itoh, K. Eda, J. Yokoyama, Nagaoka Tech : H.Takahashi, Niigaka Univ : K.Oohara, Y.Hiranuma, M. Kaneyama, T. Wakamatsu Toyama Univ : S. Hirobayashi, M. Nakano

Total: 26 (Graduate students are included. Undergrad. are not included) + associated people (S. Mano, N.Ohishi,...) About 30 people in the mailing list.

Korean subgroup Leader: Hyung Won Lee

Inje Univ. : Hyung Won Lee Jeongcho Kim Kyung Hee Univ. /KISTI: Chunglee Kim

Data analysis tasks

- CBC search
- Burst GW search
- CW search
- Stochastic background
- New TF methods
- Calibration

- etc..

Targets on iKAGRA observation - Stable operation of the data transfer system, data analysis pipeline

To gain experience to analyze
 real data toward bKAGRA
 observation

World GW detectors

KAGRA(3km)

Virgo(3km)

(4km&2km)

Why World detector

Reduce the False Alarm Ratio (chance coincidence)
 Detector noise => non detector correlation
 Supernova signal => correlation
 Applying Coherent Network Analysis(explain later)

Detector 1 - Manna Manna Detector 2 - Manna Minimum Detector 3 - Manna Manna i Detector m - ---

- Cover all sky is very important multi detector help it

- Estimation of source direction

B.Schutz(2011)

- Need (more than) Four detector
- Coincidence, Coherence

T.Arima

Candidate GW sources

	Known waveform	Unknown waveform		
Short	Compact Binary Coarseness NS-NS, NS-BH, BH-BH, Matched filtering	Supernova, GRB, pulsar glitch Soft Gamma Repeater, Excess power, TF clustering,		
duration	2e-22 Inspiral期の波形 (チャープ波形) 1e-22 +(t) 0 +(t) 0 -1e-22 -1e-22 100Mpc,1.4.1.4Mo -0.1 -0.08 -0.06 -0.04 -0.02 0	http://www.eso.org		
Long	mili-second pulsar, radiometry LMXB search F-statistics, performance	Stochastic GW, Cosmic string GW, BICEP2: B signal		
duration	GPGPU			
	Wikipedia	Right ascension [deg.]		

Analysis strategy - Observed signal-

Frequency [Hz]

Expand to TF plane Search transient signal

Time[sec]

Single detector -TF clustering-

- Analysis flow :
 - Data quality check, commissioning
 - Transform to TF plane
 - Search the local high power pixel
 - Clustering
 - Event reconstruction
- Obtain Signal to Noise ratio effectively
- Extract characteristics Time and Frequency
- Check with noise catalogue

Simulated supernova waveform

Analysis strategy -Detector noise-

- But real detector has
- Non-stationary noise
 - Change noise floor level
 - Many glitch noise with short time
- Non-gaussian noise
 - Glitch noise
 - seismic motion
 - earthquake, oscine wave, etc...
 - electro-magnetic noise
 - etc...

-reduce/identify them (important task)

- Correlation analysis with Environmental channels
 - linear correlation (Pearson correlation factor)
 - non-linear correlation (Maximum Information Coefficients)
- Noise classification
 - Bayesian non-parametric clustering
- Non-stationarity, non-gaussian noise monitor etc...

Example of LIGO S5 data

Multi detector -Coherent network analysis-

- Coherent network analysis

$$\begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{d} \end{bmatrix} = \begin{bmatrix} F_{1+}(\theta, \phi) & F_{1\times}(\theta, \phi) \\ \vdots & \vdots \\ F_{d+}(\theta, \phi) & F_{d\times}(\theta, \phi) \end{bmatrix} \begin{bmatrix} h_{+}(t) \\ h_{\times}(t) \end{bmatrix} + \begin{bmatrix} n_{1}(t) \\ \vdots \\ n_{d}(t) \end{bmatrix}$$

Data Detector response GW Detector noise $\mathbf{x} = \mathbf{Ah} + \mathbf{N}$

- Solve the inverse problem h with maximum likelihood method
- Changing source direction(heta, ϕ)
- Find the likely GW waveform h

$$\mathbf{L} = \max(-||\mathbf{x} - \mathbf{Ah}||^2)$$

 $||data(x) - estimated signal(\xi)||^2$

- Various pipelines are proposed
 - coherent WaveBurst
 - Xpipeline
 - RIDGE etc...

where
$$||x||^2 = \sum_{i=1}^d \int_0^T x_i(t)^T x_i(t) dt$$

$$h = (A^T A)^{-1} A^T x$$

arXiv.org > astro-ph > arXiv:1501.00966

Astrophysics > High Energy Astrophysical Phenomena

Coherent Network Analysis of Gravitational Waves from Three-Dimensional Core-Collapse Supernova Models

Kazuhiro Hayama, Takami Kuroda, Kei Kotake, Tomoya Takiwaki

One example of their results : used numerical simulation result T. Kuroda, T. Takiwaki, and K. Kotake, Phys. Rev. D 89, 044011 (2014), arXiv:1304.4372

20

40

60

time [ms]

80

100

With external trigger

Message from Supernova

Analysis team

SNe Theory

Y. Suwa

Provide time correlated data, GW and neutrino
Suggest signature signals physical phenomenon

Neutrino analysis

T. Kayano, Y. Koshio M. Vagins

R&D of EGADS detector

 Signal simulations with EGADS and SK

GW analysis

T. Yokozawa, M. Asano
T. Arima, N. Kanda
KAGRA detector simulations
Develop/Optimize GW analysis tools
Prepare for realtime observation

GW waveform

Probing core rotation - motivation-

- Submitted to ApJ (arXiv : 1410.2050)
- Focus on **GW observed time**(t_obs_gw) and **Neutronization burst time**(t_obs_nburst)
- Supernova detection simulation with KAGRA and EGADS/SK+Gd detector

Probing core rotation -detector-

Robust analysis Simple search, single detector

Study with KAGRA and EGADS/SK+Gd neutron tagging with Gd(90%) test tank for GADZOOKS! project

GW analysis Excess power filter + Short Time Fourier Transform Generate signal s(t)=h(t)+n(t) Search window which give SNR>8

Neutrino analysis generate signal with Poisson statistics search window which give max number of observation electron neutrino

Probing core rotation -time epoch-

GW - Nu epoch : 1.0 pi rad/s

0.0 pi rad/s

0.0 pi rad/s

Probing core rotation -result1-

For "Strong" core rotation model:

Preliminary	KAGRA det. eff.[%]	EGADS Nburst[%]	SK+Gd Nburst[%]	Evaluate rotation[%]
0.2kpc uniform	88.0	100		98.4
1.0kpc uniform	73.6	40.2		80.00
Galactic Center	21.5	-	94.8	75.3
Galaxy distribution	26.7		81.7	76.2

- For neutrino detector, identification probability of neutronization burst is described

- In 0.2 or 1.0 kpc, current SK DAQ may not work correctly
- In GC, a few of electron neutrino will be observed
- KAGRA analysis
 - First window which satisfied SNR>8
- Galactic Center
 - decl : -28°56'10.23", 10kpc
- Galaxy distribution :

 $\begin{array}{l} \underline{\text{exponential disk model}} \\ dN \propto R \ dR \ dz \ e^{-\frac{R^2}{2R_0^2}} e^{-\frac{|z|}{h}} \\ \\ \text{where, } R_0 \sim 3.5 \text{kpc, } h \sim 320 \text{pc} \end{array}$

Probing core rotation -result2-

For "No" core rotation model:

Preliminary	KAGRA det. eff.[%]	EGADS det. eff.[%]	SK+Gd det. eff[%]	Evaluate rotation[%]
0.2kpc uniform	74.8	100	-	0.0
1.0kpc uniform	46.5	46.8		20.8
Galactic Center	0.0		97.5	NaN
Galaxy distribution	1.5		84.6	0.2

 For neutrino detector, identification probability of neutronization burst is described

- In 0.2 or 1.0 kpc, current SK DAQ may not work correctly
- In GC, a few of electron neutrino will be observed
- KAGRA analysis
 - First window which satisfied SNR>8
- Galactic Center
 - decl : -28°56'10.23", 10kpc
- Galaxy distribution :

 $\begin{array}{l} \underline{\text{exponential disk model}} \\ dN \propto R \ dR \ dz \ e^{-\frac{R^2}{2R_0^2}} e^{-\frac{|z|}{h}} \\ \\ \text{where, } R_0 \sim 3.5 \text{kpc, } h \sim 320 \text{pc} \end{array}$

Identification SASI motion -tools-

SK trigger information s(t_i)=0 or 1

SuperKamiokande detector can save neutrino observe time with high accuracy Give the signal of 0 or 1 for each time It will useful to use $\Delta \Sigma$ modulator

http://www.a-r-tec.jp/DSADC2.pdf

SK trigger information s(t_i)=0 or 1

inverse ΔΣ modulator

Clear modulation? difficult to identify?

- Check the performance of (inverse) $\Delta \Sigma$ modulator

Identification SASI motion -simulation-

Assume 100Hz modulation with 10 times : 100ms modulation Number of mean observed neutrino at SuperKamiokande 225[100ms/10kpc/22.5kton] for SASI phase

Signal simulation :

- 1. Compute # of observed event poisson distribution with μ =225
- 2. With PDF, make trigger event with $1 \mu s$ resolution

 $PDF \propto A \times \sin(2\pi ft) + 0.5$

3. Apply inverse $\Delta \Sigma$ modulator(LPF) 4. Apply FFT and extract amplitude, A_{obs} 5. Calculate SNR for 100Hz amplitude

$$\label{eq:SNR} \begin{split} &\mathrm{SNR} = \frac{A_{obs} - N_m}{N_\sigma} \\ &N_m : \mathrm{mean} \ \mathrm{of} \ \mathrm{extracted} \ \mathrm{amplitude} \ \mathrm{for} \ \mathrm{flat} \ \mathrm{PDF} \\ &N_\sigma \ : \mathrm{variance} \ \mathrm{of} \ \mathrm{extracted} \ \mathrm{amplitude} \ \mathrm{for} \ \mathrm{flat} \ \mathrm{PDF} \end{split}$$

Identification SASI motion -results-

Estimate Flat distribution(noise) One shot : amplitude-frequency $A_{ons,flat} = 3.0 \times 10^{-4}$ Apply 1,000,000 times, obtain $N_m = 2.61 \times 10^{-4}, N_\sigma = 1.34 \times 10^{-4}$ Independent from N_{obs}

Estimate A dependence(signal) One shot : amplitude-frequency $N_{obs} = 225$ $A_{obs,0.5} = 1.2 \times 10^{-3}, \text{SNR} = 7.7$ Set observation threshold = 5 σ

A	Det. Eff.	
0.5	86%	
0.4	45%	
0.3	14%	
0.2	2%	
0.1	<1%	

time epoch -preliminary-

M.Asano

Investigate the method to extract the characteristic epoch

- prompt convection
- shock stall
- SASI, neutrino-driven convection etc..

s80 model (Suwa et al) GW and neutrino

- GW (extract projecting SNR)
 - first : prompt
 - after : SASI etc.
- neutrino (extract high frequency component)

s80 model's epoch prompt GW's epoch : 274ms, delayed GW's epoch : 547~875ms start time of delayed phase : 563ms

Physical process fodel	prompt convec- tion[ms]	shock stall[ms]	SASI,Neutrino-drive convection etc.[ms]	n-convection,PNS
typical	200	$300 \sim 500$		$500 \sim$
	epoch of GW		epoch of $\bar{\nu}_e$	
s80	274	na	547~875	563
s50	234	na	609~921	563
s15	na	na	547~657	500
s20	na	na	705~783	682
s30	337	na	$744 \sim 1275$	470
s40	na	na	773~1289	789
s100	na	na	654~1240	647

- KAGRA status
 - iKAGRA observation will start end of this year
 - Installation work is going on
- Analysis strategy
 - Single detector : Expand to TF plane and search clustering
 - Multi detectors : Coherent Network Analysis
- Messages from Supernova
 - Core bounce from GW
 - Template tuning and extract the rotation power
 - Coincidence analysis with neutrino and GW

GWPAW 2015@ Osaka

Date: 17-20 June, 2015 Venue: INTEX-Osaka International Conference Hall

Matthew Evans (LIGO), Francesco Piergiovanni (Virgo), Takaaki Kajita (KAGRA) Martin Hewitson (eLISA & LPF), Masaki Ando (DECIGO), Dick Manchester (PTAs)

Counterpart/follow-up

Edo Berger (Short GRB), Shrinivas Kulkarni (Optical-Infrared-radio) Peter Meszaros (X, Gamma), Mark Vagins (Neutrino)

GW Data Analysis and Theory

Alessandra Buonanno (GW modeling), Maria Alessandra Papa (Data analysis) David Merritt (Sources for low frequency GW) Bruce Allen (Summary talk and organizer of discussion)