

超新星ニュートリノと元素合成 - r プロセスー

<u>S. Shibagaki^{1, 2}, T. Kajino^{2, 1} G. J. Mathews³ S. Chiba⁴</u> S. Nishimura⁵, and G. Lorusso⁵

1 University of Tokyo 2 National Astronomical Observatory of Japan 3 University of Notre Dame 4 Tokyo Institute of Technology 5 RIKEN

Condition for r-process

Neutron/Seed が高いほどr-processは起こりやすい!

- Expansion timescale (τ)
- Entropy (S)
- Electron fraction (Y_e) $\mathbf{I} \rightarrow \mathbf{A}$ Neutron

 $\frac{(S/230 \,k_{\rm B} \,\rm nucleon^{-1})}{(Y_{\rm e}/0.40)(\tau/20 \,\rm ms)^{1/3}} \gtrsim 1, \quad 0.38 \lesssim Y_{\rm e} \lesssim 0.46$ Hoffman et al. (1997), Wanajo (2013)

$$Y_{e,f} \approx \left(1 + \frac{L_{\overline{v}_e}}{L_{v_e}} \frac{\epsilon_{\overline{v}_e} - 2\Delta + 1.2\Delta^2/\epsilon_{\overline{v}_e}}{\epsilon_{v_e} + 2\Delta + 1.2\Delta^2/\epsilon_{v_e}}\right)^{-1}$$

Qian and Woosley (1996)

R-processのためには Short expansion time Low electron fraction

Weak r-process

Wanajo, Janka, Muller(2011)

ν -driven wind weak r-process may be possible to synthesize up to Cd

Magneto-hydrodynamic (MHD) Jet Supernova

S. Nishimura, et al., ApJ, 642, 410 (2006); T. Takiwaki, K.Kotake and K. Sato, ApJ 691, 1360 (2009); C. Winteler, et al., ApJ 750, L22 (2012).

Recent RIKEN β-Decay Experiment: S. Nishimura et al., PRL 106, 052502 (2011).

One of the Best Moc

N

Nuclear Mass Model: KTUY Model Fission Barrier, Q_B

Koura, Tachibana, Uno, Yamada, PTP 113, 305 (2005).

<u>Reaction Rates:</u> α-decay, β-decay, fission

- H. Koura, AIP Conf. Proc. 704, 60, (2004).
- M. Ohta et al., Proc. Int. Conf. on Nucl. Data for Science and Technology, Nice, France, (2007).

iviass inumper

Fission Fragment Mass Distribution

Fluid Data for Neutron Star Merger

$1.0 M_{\bigodot}~NS$ - $1.0 M_{\bigodot}~NS$ Binary Merger Simulation

Korobkin et al., MNRAS 426 (2012), 1940, Piran et al., MNRAS 430 (2013), 2121, Rosswog et al., MNRAS 430 (2013), 2585.

Smoothed particle hydrodynamic simulation

Abundance Evolution of Neutron Star Merger (MOVIE)

Elemental Abundances of Neutron Star Merger

Magneto-hydrodynamic (MHD) Jet Supernova

S. Nishimura, et al., ApJ, 642, 410 (2006) ; T. Takiwaki, K. Kotake and K. Sato, ApJ 691, 1360 (2009); C. Winteler, et al., ApJ 750, L22 (2012).

entropy 12

10

7.5

5

2.5

Ō

Abundance

Underproduction PROBLEM!

Mass Number A

<u>Summary</u>

- There are 3 candidates for r-process sites.
 (MHD-Jet SN, NSM, v-driven wind SN)
- We construct the new nuclear reaction network code and apply to r-process nucleosynthesis of the binary neutron star merger.
- MHD–Jet SNe + NSMs + v-driven wind SNe can reproduce the solar r-elements.
- Fission fragment mass distribution (FFD) and fission barrier are critical to reproduce the elemental abundance around A = 160.
- → Quest for nuclear mass models and FFDs is highly desirable.