酸素•炭素原子核の巨大共鳴からの γ 線測定超新星爆発 ν 測定への応用

王 岩 ：岡山大学＠第3回超新星ニュートリノ研究会＠東北大学

T．Sudo，M．S．Reen，R．Dhir，M．Sakuda，Y．Yamada，T．Shirahige，D．Fukuda，Y．Koshio，T．Mori（Okayama） A．Tamii，N．Aoi，M．Yosoi，E．Ideguchi，T．Suzuki，，C．Iwamoto，T．Ito， M．Miura，T．Yamamoto（Research Center for Nuclear Physics）
T．Kawabata，S．Adachi，T．Furuno，M．Tsumura，M．Murata（Kyoto）
T．Hashimoto（IBS），K．Miki，H．Akimune（Konan），H．Nakada（Chiba），T．Yano（Kobe）

${ }^{16} \mathbf{O},{ }^{12} \mathbf{C}\left(\mathbf{p}, \mathbf{p}^{\prime} \gamma\right)$

Outline

1．研究背景：超新星ニュートリノの検出•巨大共鳴
2．E398 ${ }^{16} \mathrm{O},{ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{p}, \gamma)$ 実験概要
3．磁気スペクトロメータ＂Grand Raiden＂解析
1．励起スペクトル
2．${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ 反応断面積，角度分布
4．γ 線検出器解析：エネルギー較正•MCとの比較
5．巨大共鳴状態から放出される γ 線
1．エネルギースペクトル
2．γ 線の放出率
6．まとめ

1．研究背景：超新星ニュートリノ検出：CC反応 \＆NC反応
＊地球から 10 kpc の距離で超新星爆発が起きた際に地上で予想される v 検出数
－Super Kamiokande（ $\mathrm{H}_{2} \mathrm{O}$ ）
Ref．Beacom－Vogel，PRD58，053010，＇98

$$
\begin{array}{ll}
C C: \bar{v}_{e}+p \rightarrow e^{+}+n & \sim 8000 \mathrm{ev} . \\
N C: v_{x}+{ }^{16} O \rightarrow v_{x}+X \oplus \gamma\left(v_{x}=v_{\mu}, v_{\tau}\right) & \sim 700 \mathrm{ev} .
\end{array}
$$

－KamLAND（CH）

Ref．A．Suzuki，Nucl．Phys．B（Proc．Suppl．）77（1999）171－176

$$
\begin{array}{rlr}
\boldsymbol{C C}: & \bar{\nu}_{e}+p \rightarrow e^{+}+n & \sim 300 \mathrm{eV} . \\
N C: v_{x}+{ }^{12} C \rightarrow v_{x}+X+\gamma(15.1 \mathrm{MeV}) & \sim 60 \mathrm{eV} . \\
N C: v_{x}+{ }^{12} C \rightarrow v_{x}+X+\gamma\left(E_{X}>16 \mathrm{MeV}\right. & \sim 60 \mathrm{eV} . \\
\text { 巨大共鳴からの } \gamma \text { 線 }
\end{array}
$$

＊SN 1987A

NC事象：原子核の巨大共鳴状態から放出される γ 線が信号

1．（2）中世カレント（NC）反応で検出する重要性

- 2 or 3番目に多い事象
- μ, τ 型（反）ニュートリノの信号
$\rightarrow \mathrm{T}_{\mathrm{v} \mathrm{\mu}} \mathrm{~T}_{\mathrm{v} \mathrm{\tau}}$（平衡温度）に関する情報 SKで検出した際に予想される信号

Ref．K．Langanke et al．，Phys．Rev．Lett．76（1996）．
＊統計崩壊モデルを使った理論計算

超新星爆発シミュレーション

K．Nakazato et al．，ASTROPHYS．J．S．205：2（2013） ${ }^{16} \mathrm{O}^{*}($ 巨大共鳴 $) \rightarrow{ }^{15} \mathrm{~N} /{ }^{15} \mathrm{O}+\mathrm{p} / \mathbf{n}+\gamma(5 \sim 10 \mathrm{MeV}) \sim \mathbf{3 0 \%}$巨大共鳴状態から放出される γ 線を定量的に測定したデータが存在しない。

1．（3）原子核の巨大共鳴状態

- 核子による集団的運動振動ったよる励起状態
- エネルギー幅が大きい

Single particle－hole excitation

Collective excitation （vibration or rotation）
－量子数：スピン・パリティJP，アイソスピンT

巨大共鳴の分類例
$\Delta \mathrm{L}$ ：角運動量の変化 $\Delta \mathrm{T}$ ：アイソスピンの変化 $\Delta \mathrm{S}$ ：スピンの変化

$\Delta \mathrm{L}=0, \Delta \mathrm{~T}=\mathrm{I}, \Delta \mathrm{S}=0$
GMR

Giant Dipole Resonance
［ $-L_{L=I, \Delta T=I, \Delta S=0}^{\Delta L=I, \Delta T=I, \Delta S=I}$ Spin Dipole Resonance

200

7.51012 .51517 .52022 .52527 .5 Ex［MeV］

1．（4）${ }^{16} \mathrm{O}\left(v, v^{\prime}\right)$ 反応による巨大共鳴状態への励起

－ $\mathrm{NC} \quad \mathbf{v}+\mathrm{A} \rightarrow \mathbf{v}+\mathrm{A}^{\prime}$
低エネルギー領域の原子核遷移行列は
Axial－Vector Current \gg Vector Current
－特に $\mathrm{J}^{\mathrm{P}}=2^{-}(\mathrm{T}=1), 1-(\mathrm{T}=1)$ の寄与が大きい。 \rightarrow 巨大共鳴の中でも，

Spin－Diple Resonance への励起が支配的 $\left({ }^{12} \mathrm{C}\right.$ の場合は $\mathrm{J}^{\mathrm{P}}=1^{+}(\mathrm{T}=1)$ も \rightarrow Karmen実験で測定）
－巨大共鳴状態の分類
$\operatorname{GDR}\left(\mathrm{J}=1^{-}, \Delta \mathrm{T}=1, \Delta \mathrm{~S}=0, \Delta \mathrm{~L}=1\right): \quad f_{1}(r) Y_{1}^{m} \tau_{3}$
$\operatorname{SDR}\left(\mathrm{J}=0^{-}, 1^{-}, 2^{-}, \Delta \mathrm{T}=1, \Delta \mathrm{~S}=1, \Delta \mathrm{~L}=1\right): \quad \vec{\sigma} f_{1}(r) Y_{1}^{m} \tau_{3}$
${ }^{16} \mathrm{O}\left(v, v^{\prime}\right)$ Cross Section（CRPA Calculation）
Ref．Jachowicz et al ．，PRC59（＇99）

Spin－M1 Resonance $\left(\mathrm{J}^{\mathrm{P}}=1^{+}, \Delta \mathrm{T}=1, \Delta \mathrm{~S}=1, \Delta \mathrm{~L}=0\right): \vec{\sigma} f_{0}(r) \tau_{3}$
Spin Dipole Resonance： $\mathrm{J}^{\mathrm{P}}=2-(\mathrm{T}=1), 1-(\mathrm{T}=1) へ$ の励起が支配的 （ ${ }^{12} \mathrm{C}$ の場合はSpin－M1 Resonance $\mathrm{J}^{\mathrm{P}}=1^{+}, 15.1 \mathrm{MeV}$ も）

1．（4）${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{p})$ 反応による巨大共鳴状態への励起

$+\mathrm{O}\left(v, v^{\prime}\right): \operatorname{SDR}\left(2^{-}, 1^{-}\right)$が支配的。C（v，$\left.v^{\prime}\right): \operatorname{SDR} \& 1^{+}(15.11 \mathrm{MeV})$ が支配的
$+\mathrm{O}, \mathrm{C}\left(\mathrm{p}, \mathrm{p}^{\mathrm{\prime}}\right): \mathrm{Ep}=392 \mathrm{MeV}, \boldsymbol{\theta}=3^{\circ} \sim 5^{\circ}$ でSDR（ $\left.1^{-}, 2^{-}\right)$が支配的となる
Cross Section of ${ }^{\mathbf{1 6}} \mathbf{O}(\mathbf{p}, \mathbf{p})\left(\mathbf{E}_{\boldsymbol{p}}=\mathbf{3 9 2 M e V}\right)$ Ref．Kawabata et al．，PRC65（＇02）064316

0° ：GDR dominant（ $\Delta \mathrm{L}=1, \Delta \mathrm{~S}=0, \Delta \mathrm{~T}=1$ ）

4° ：SDR dominant（ $\Delta \mathrm{L}=1, \Delta \mathrm{~S}=1, \Delta \mathrm{~T}=1$ ）
$\rightarrow\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ 反応を使って原子核をGDR，SDRへ励起させて γ 線を測定！

1．（5）巨大共鳴状態からの崩壊 $\rightarrow \gamma$ 線放出

巨大共鳴状態は核子を放出して崩壊した後に γ 線を放出 （＊統計崩壊モデルに基づく理論計算が可能）

巨大共鳲状態の量子数と励起エネルギーが重要

1．超新星 $v \mathrm{NC}-\gamma$ 事象のイベント数

爆発で放出される
vフラックス
\times NC反応による励起断面積 ×
巨大共鳴から放出 される 線の放出率

ココを知りたい！

\uparrow
Decay－At－Rest vビーム実験で いつか測定できる（？）

測定可能

2．E398 experiment：${ }^{16} \mathrm{O},{ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{p} \gamma)$ 実験概要

at RCNP（Osaka Univ．），2014年5月19日～28日
＇Primary Beam
－励起エネルギー $\left(\mathbf{E}_{\mathbf{x}}\right)$ の測定
＊陽子ビーム： $392 \mathrm{MeV}, 0.5 \sim 1.5 \mathrm{nA}$
＊標的：${ }^{\mathrm{nat}} \mathrm{C}\left(36.3 \mathrm{mg} / \mathrm{cm}^{2}\right)$
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$（Cellulose， $28.2 \mathrm{mg} / \mathrm{cm}^{2}$ ）
＊Magnetic Spectrometer＂Grand Raiden＂
－$\theta_{\text {scat }}=0^{\circ}\left(\right.$ covers $\left.0^{\circ} \sim 3^{\circ}\right)$
－Solid Angle＝ 5.6 msr
－$\Delta \mathrm{E}_{\mathrm{x}} \sim 100 \mathrm{keV}$
$\boldsymbol{\gamma}$ 線のエネルギー $\left(\mathrm{E}_{\gamma}\right)$ の測定
＊γ 線検出器 $: ~ \mathrm{NaI}(\mathrm{Tl}) \times 25$ Array
－Solid Angle \times Detection Efficiency

> ~ 2\% @6MeV (GEANT4)
－NaI： $5 \times 5 \times 15 \mathrm{~cm}, \Delta \mathrm{E} / \mathrm{E} \sim 5 \% @ 1.33 \mathrm{MeV}$
－前面 ：Plastic Scintillator Veto（ 3 mm 厚）

3.1 スペクトロメータ解析：焦点面検出器

＊Focal Plane Detecters

－Plastic Scintillators（1cm thick）$\times 2$
－Usage：Trigger \＆PID
－Stored Data：TOF
Deposit energy
－Trigger Mode ：Coincidence of 2 PSs
－Multi－wire Drift Chamber $\times 2$
－Usage：Track Reconstruction of p＇
－Stored Data：Drift Time，Hit Wire
\rightarrow Position（X，Y），Angle (θ, φ)
\rightarrow Excitation Energy（ E_{x} ）
\＆Scattered Angle（ $\theta_{\text {scat }}$ ）
For detail of Grand Raiden， see Ref．M．Fujiwara et al．，Nucl．Instrum． Methods Phys．Res．A 422， 484 （1999）．

Primary Beam

3.1 スペクトロメータ解析：Particle Identification

焦占面檐以以品

プラスチックシンチレータの
－ADC \rightarrow エネルギー損失
－TDC \rightarrow Time Of Flight
情報から陽子による事象のみを抽出

ADC

TDC

3.2 スペクトロメータ解析：トラック再構成

1．荷電粒子がチェンバー内を通過すると， アルゴンガスを電離
2．-6 kV の一様電場中をドリフトし， Anodeでその時間情報が読み出される。
3．ドリフト時間からドリフト距離へ変換し高精度（ $\Delta \mathrm{x}=0.3 \mathrm{~mm}$ ）の位置情報を取得

条件：

- 隣接した2本以上のワイヤーがHit
- 各面にはクラスターが一つのみ

4面それぞれで，反応点を求め，
トラック（焦点面での座標，入射角）を計算
Tracking efficiency ~ 0.93（4面合計）

3.3 スペクトロメータ解析：散乱角較正

スペクトロメータの入り口に穴の空いたプレートを置き，焦点面でのトラック情報との対応から散乱角を較正した

較正前のトラック情報入射角（横）vs 位置（縦）

Sieve slit
＊幾何学的に散乱角が決まる

較正後の散乱角度散乱角（横）vs 散乱角（縦）

$\boldsymbol{\theta}_{\text {t }}$［deg．］
$\theta_{\text {t }}$［deg．］

3.4 （1）＂Grand Raiden＂で取得した励起スペクトル

焦点面での位置情報から散乱陽子の運動量を計算し，
原子核に与えられた励起エネルギーを計算： $\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{p}}-\mathrm{E}_{\mathrm{p}}$ ，

3．（2）${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{p}{ }^{\prime}\right)$ 反応断面積

$$
\text { 微分反応断面積 }=\frac{\text { カウント数 }}{\text { 標的内の原子核数 } \times \text { 入射陽子数 } \times \text { 立体角 }}
$$

正確には．．．$\quad \frac{d^{2} \sigma}{d \Omega d E}=C J \frac{N}{\Omega} \frac{1}{L \eta \tau} \frac{e}{Q \epsilon} \frac{A}{N_{A} t a}$

variable	description	unit
$\frac{d^{2} \sigma}{d \Omega E}$	double differential cross section	$[\mathrm{mb} / \mathrm{sr} \cdot \mathrm{MeV}]$
C	unit conversion constant	$\left[\mathrm{mb} / \mathrm{cm}^{2} \cdot \mathrm{mg} \cdot \mathrm{g}\right]$
J	Jacobian	$[-]$
N	detection counts between E and $E+\Delta E$	$[\mathrm{counts} / \mathrm{MeV}]$
Ω	solid angle in laboratory frame	$[\mathrm{sr}]$
L	DAQ live ratio	$[-]$
η	tracking efficiency	$[-]$
τ	trigger efficiency	$[-]$
e	elementary charge	$[\mathrm{C}]$
Q	total beam charge	$[\mathrm{C}]$
ϵ	beam transportation ratio	$[-]$
A	target atomic wight	$[\mathrm{g} / \mathrm{mol}]$
N_{A}	Avogadro constant	$[/ \mathrm{mol}]$
t	target thickness	$\left[\mathrm{mg} / \mathrm{cm}^{2}\right]$
a	target enrichment	$[-]$

系統誤差

	摆差 值	見積もり方法
玄体角 Ω	4%	Sieve slit data
検出効率	1%	エネルギー依存性
電荷量 標的厚み等	5%	ビーム輸送効率 RUNごとの変動
B．G．	1%	difference of $\theta<0 \& 0<\theta$
Total	7%	—－

> 系統㗐差は合計で7\％
> 主に立体角とビーム輸送によるもの

3．（2）${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{p})$ 反応断面積

3．（2）${ }^{12} \mathrm{C}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ 反応断面積の角度分布

4．（1）γ 線検出器解析：エネルギー較正 \＆Gain変動補正

－${ }^{12} \mathrm{C}$ の $\mathrm{J}^{\mathrm{P}}=1^{+}, 15.1 \mathrm{MeV}$ の励起状態は $88 \% \pm 3 \%$ の確率で 15.1 MeV の γ 線を放出する。 \rightarrow 各 NaI のエネルギー較正•検出効率の較正を行う。

－標的で散乱した 400 MeV の陽子による影響でPMTのGainが低下
－ピーク付近を非対称ガウシアンでFitし各NaIのGainの変動を追跡

4．（2）γ 線検出器解析：MCシミュレーションとの比較

－NaI検出器をGeant4で構築し， γ 線への応答をデータと比較した。 ＊MCの規格化：励起の数× \times 線の放出率
－コンプトン部を含め良く再現できている。 Data／MC＝0．92（差はDead Time～5\％由柬）

 Energy（NaI10本）（keV）

5．（1）巨大共鳴状態から放出される γ 線：エネルギースペクトル
${ }^{12} \mathrm{C}$
${ }^{16} \mathrm{O}$
黒：Coincidence 赤：Accidental Coincidence

Ref．I．Ou et．al，JPSJ Conf．Proc．

- 励起エネルギー高 \rightarrow 検出される γ 線のエネルギー値高
- 核子崩壊後の娘核から γ 線が放出されている。

巨大共鳴状態は核子を放出して崩壊い娘核の励起状態へと遷移した場合 γ 線を放出 （＊統計崩壊モデルに基づく理論計算が可能）

巨大共鳴状態の量子数と励起エネルギーが重要

5．（2）巨大共鳴状態から放出される γ 線 ：放出率

\rightarrow 核子崩壊後に γ 線を出すという予想は定性的に正しそう
(Ref. Langanke et. al.)

5．（2）巨大共鳴状態から放出される γ 線 ：放出率

励起スペクトル
放出される γ 線スペクトル

- ${ }^{12} \mathrm{C}, ~ \mathrm{E}_{\mathrm{x}}=18 \sim 20.4 \mathrm{MeV}: \gamma$ 線 2.12 MeV のみ
- MCで2．12MeVのスペクトルを作成励起数で規格化した後にデータと比較 \rightarrow 放出率 $=10 \pm 1$（stat．）\pm
－励起エネルギーを上げ，候補となる「線のスペクトルをMCで作成し実験データをFitし放出率を算出

γ－Energy（NaI10本）（keV）
統計崩壊モデル計算で予想される放出率 ＊ $\mathrm{j}=1 ; \mathrm{T}=1$ の例：最終的には他の状態の考慮も必要

6．まとめ

- ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}$ との NC 反応（非弾性散乱）を用いて $\mu \& \tau$ 型の超新星ニュートリノが検出できる。
- NC事象は巨大共鳴状態へ励起された原子核から放出される γ 線で同定される。

しかし，実際に放出率を測定した定量的なデータがなかった。

実験目的：γ 線の放出率を励起エネルギー $\mathbf{1 M e V}$ ごとに 10% 以内の誤差で求める。

- E398実験 ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{p} \gamma \gamma)$ 実験：データ解析
- Grand Raiden：反応断面積，角度分布（今後理論計算と比較）を得た。
- NaI γ 線検出器：エネルギー較正 \＆MCとの比較（Ref．須藤Poster）
- 巨大共鳴状態からの γ 線解析：
\rightarrow 理論計算の予想通り，核子崩壊後に線を放出することが確認された。
－${ }^{12} \mathrm{C}, \mathrm{E}_{\mathrm{x}}=18-20.5 \mathrm{MeV}$ の状態は，2．12MeVの γ 線を $\mathbf{1 0 \%} \% \mathbf{2 \%} \%$ の確率で放出
これから
- さらに高いエネルギー領域へと拡張し，Ex＝1～2MeVごとに放出率を求める。
- 統計崩壊モデルと比較する。
- 散乱角依存性を調べる $\left(\theta_{\mathrm{GR}}=0 \sim 2.5^{\circ}, \Delta \theta_{\mathrm{GR}} \sim 0.5^{\circ}\right)$ 。

