KamLANDにおけるSRN探索と 高速中性子イベントの除去

新学術「地下素核」第3回超新星ニュートリノ研究会 2017/3/4

小原脩平 (東北大学 RC ν S)

on behalf of KamLAND collaboration

Contents

- 1. KamLANDの紹介
- 2. KamLANDにおけるSRN探索
- 3. 高速中性子イベント除去 OD改修工事 -
- 4. 大気 v NCイベント除去 neutron PSD -
- 5. まとめ

KamLANDの紹介

立地とOuter Detector (OD)

立地

- 池の山山頂から地下1,000m (2,700m w.e.)
- MuonRateが地上比10⁻⁵ (~0.3Hz)
- 旧KamiokaNDE跡地

水チェレンコフ検出器

- 純水 (3.2kton)
- 225本→140本の20inch PMT
- チェレンコフ光で宇宙線ミューオンを見る
- 周囲の岩盤からくる中性子をブロック

Inner Detector (ID)

- 原子炉停止中なら低エネルギー側 がよく見れる
- 反電子ニュートリノに関して高感度
- muon原子核破砕イベントの同定

- 大気ニュートリノが深刻なBG
- Scintillationなので方向感度がない

(KamLAND@2011, arXiv:1105.3516v2)

(KamLAND@2011, arXiv:1105.3516v2)

※ illustratorで消しました。Photoshopではない。

(KamLAND@2011, arXiv:1105.3516v2)

•Outer Detectorの改修工事

•Neutron PSD (challenging)

OuterDetector (OD); 水チェレンコフ検出器

- 宇宙線ミューオン事象を捉える
- 周囲の岩盤からの中性子をブロック

OuterDetector (OD); 水チェレンコフ検出器 宇宙線ミューオン事象を捉える 周囲の岩盤からの中性子をブロック • **OD** Inefficiency 0.45 0.4 OD-PMTの多量死によって 0.35 inefficiencyの増加 0.3 OD Inefficiency[%] 0.25 0.2 0.15 0.1 0.05 preliminar 2008 2010 2012 2014 2016 2004 2006 Year

OuterDetector (OD); 水チェレンコフ検出器

- 宇宙線ミューオン事象を捉える
- 周囲の岩盤からの中性子をブロック

赤道付近の厚みが薄く、遮蔽力が弱い

高速中性子が偽IBDをつくる

OuterDetector (OD);水チェレンコフ検出器

- 宇宙線ミューオン事象を捉えるが捉えにくくなりつつある
- 周囲の岩盤からの中性子をブロック

赤道付近が弱い

OuterDetector (OD); 水チェレンコフ検出器

- 宇宙線ミューオン事象を捉えるが捉えにくくなりつつある
- 周囲の岩盤からの中性子をブロック

死んだOD PMTを付け替え
赤道付近にはHigh-Q.E. PMTを設置

尾崎修論より

OD改修工事 - 赤道部分の補強 -

HQE PMTを赤道に向けて多めに配置+高反射率の反射シート

※外水槽検出器内部で一様発生させた²²²Rnとその娘核の崩壊事象シミュレーション

尾崎修論より

OD改修工事 - PMT取替 -

刷新工事期間:2016年1月~3月

2017/3/4

OD改修工事の結果 - ミューオン -

ODで取り逃すミューオン

0.29 → <u>0.11 %</u>

※ 今までは内部検出器で見ても 明らかにMuonとわかるような 事象でも、外部検出器でMuon 判定されない事象が0.29%だっ たが、今回の改修工事で従来の 1/3まで低減した

尾崎修論より

OD改修工事の結果 - 高速中性子 -

大気vNCの背景事象

(KamLAND@2011, arXiv:1105.3516v2)

Atom. v NC Reaction	Number of Events (7.5~30.0 MeV) @ 2011	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + n + {}^{11}C + \gamma$	13.2	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + n + {}^{10}B + p$	1.4	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + n + {}^{6}Li + \alpha + p$	1.4	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + n + {}^{9}Be + 2p$	0.3	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + 2n + {}^{10}C$	0.1	
Total	16.4±4.7	

大気vNCの背景事象

(KamLAND@2011, arXiv:1105.3516v2)

Atom. v NC Reaction	Number of Events (7.5~30.0 MeV) @ 2011	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + n + {}^{11}C + \gamma$	13.2	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + n + {}^{10}B + p$	1.4	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + n + {}^{6}Li + \alpha + p$	1.4	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + n - {}^{9}Be + 2p$	0.3	
$\nu(\overline{\nu}) + {}^{12}C \rightarrow \nu(\overline{\nu}) + 2n + {}^{10}C$	0.1	
Total	16.4±4.7	

- Energeticなneutronができる → 偽IBDをつくる
- 検出器内でできると OD veto できない
- Simulationからの見積もりのみで評価

大気 v NCイベント除去 – neutron PSD -

PulseShapeDiscrimination

大気 v NCイベント除去 – neutron PSD -

PulseShapeDiscrimination

LABベースの液体シンチレータ検出器(JUNO, Jinping etc,,,)で PSDのstudyが発展

発光波形のうち

- ・ 鋭く&速い成分
 → Cherenkov光によるもの
- ・ なまっていて遅い成分
 → Scintillation光によるもの

arXiv:1607.01671v1

arXiv:1607.01671v1

 γ -protonのPSDができる_{かもしれない}

大気 v NCイベント除去 – neutron PSD -

PulseShapeDiscrimination

KamLAND-LSでは立ち下がりが早く Cherenkov光も不十分で見えにくい 低エネルギー(a few MeV)での $\alpha - \beta / \gamma$ のPSDは難しい

では高エネルギー(10MeV以上)での γ-protonのPSDは ?

Let's PSD for high energy region !!

大気 v NCイベント除去 – neutron PSD -

PulseShapeDiscrimination

- studyの途中経過の様子を載せる
- 「LAB-LS@Jinpingでの結果だとatm.vNCが1/5になるのでそこまで いければうれしい」的な内容を書く

すいません、お見せできるような絵を作れなかった。。。。

背景事象がどれくらい減るか

atm.ν NCが1/5になるとすると

4.53kton-	year
-----------	------

Background	Number of events for 7.5~30.0MeV @2011
Random coincidence	0.22 ± 0.01
Reactor $\overline{\nu_e}$	2.2 ± 0.7
⁹ Li (muon spallation)	4.0 ± 0.3
Fast neutron	3.2 ± 3.2
Atmospheric v (CC)	0.9 ± 0.2
Atmospheric v (NC)	16.4 ± 4.7
Total	26.9 ± 5.7

背景事象がどれくらい減るか

atm.ν NCが1/5になるとすると

4.53kton-year

Background	Number of events for 7.5~30.0MeV @2011
Random coincidence	0.22 ± 0.01
Reactor $\overline{\nu_e}$	$\frac{2.2 \pm 0.7}{2.2} \rightarrow \sim 0$
⁹ Li (muon spallation)	4.0 ± 0.3 → ?
Fast neutron	$3.2 \pm 3.2 \rightarrow ?$
Atmospheric v (CC)	0.9 ± 0.2
Atmospheric v (NC)	16.4 ± 4.7 → ~ 3.28
Total	26.9 ± 5.7 → 11.6

Total Backgroundが<mark>約半分</mark>になる

- KamLANDでは低エネルギー側でSRN探索が可能 しかも今はReactor停止中
- ・OD改修工事で**高速中性子・Spallation**による不定性低減
- PSDで**大気 ν** による背景事象低減に *CHARANGE !!*

back up

- 原子炉停止中なら低エネルギー側 がよく見れる
- 反電子ニュートリノに関して高感度
- muon原子核破砕イベントの同定

- 大気ニュートリノが深刻なBG
- Scintillationなので方向感度がない

大気 ν の背景事象 (CC)

(KamLAND@2011, arXiv:1105.3516v2)

4.53kton-year Atom. v CC Reaction	Number ((7.5~30.0 M	Number of Events (7.5~30.0 MeV) @ 2011	
	N of evt	Untagged	
$\bar{\nu}_{\mu} + p \rightarrow \mu^+ + n$	2.1	0.5	
$\bar{\nu}_{\mu}$ + ¹² C \rightarrow μ^{+} + n + ¹¹ B	0.7	0.2	
$\nu_{\mu} + {}^{12}C \rightarrow \mu^{-} + n + {}^{11}N$	0.4	0.1	
$\bar{\nu}_{\mu}$ + ¹² C \rightarrow μ^{+} + n + ¹¹ B + γ	0.4	0.08	
$\bar{\nu}_{\mu}$ + ¹² C $\rightarrow \mu^{+} + n + {}^{7}\text{Li} + \alpha$	0.4	0.08	
$\bar{\nu}_{\mu} + {}^{12}C \rightarrow \mu^+ + 2n + {}^{10}B$	0.02	0.005	
Total	4.0±0.9	0.9±0.2	

time spectrum

tmp20170302.eps

- 22evt/4.53kt-year @ 2011result (7.5~30MeV)
- 11evt/4.53kt-year @ if 1/5 atom. ν & reactor off (7.5-30MeV)
- expected SRN 0.4 evt/1kt-year (10-30MeV)
- \rightarrow S/N =1.82/11 ; we need more one order BG decreasing ?
- Currently we have ~ 7kton-year
- 17evt BG (if 1/5 atom. ν & reactor off (7.5-30MeV))
- 2.1evt Expected
- we can lower threshold than expected (Eth~10MeV)
- we may obtain 1σ limit for any models