Gamma-Ray Bursts

Daisuke Yonetoku (Kanazawa Univ.)

Self Introduction

1st topic : Introduction of Gamma-Ray Bursts

2nd topic : Emission mechanism of long GRB probed by gamma-ray polarization

3rd topic : Short gamma-ray bursts and gravitational wave astronomy

Future mission: HiZ-GUNDAM

新学術領域「地下素核研究」 第4回超新星ニュートリノ研究会@四季の湯強羅静雲荘 (2018/01/08-09)

NH RIGH SHITELER TONNE

1st topic : Introduction of Gamma-Ray Bursts

Gamma-Ray Bursts (GRBs)

In 1967, human being found an unidentified gamma-ray transient. However it had not been published during 6 years because of military secrets...

(during the cold war, Partial Test Ban Treaty)

"Gamma-Ray Burst" was reported as an astronomical phenomena in 1973.

Klebesadel, Strong & Olson, ApJ (1973), 182, L85

Prompt Emission of GRBs

The Most Energetic Explosion in the Universe

- Total radiation energy is 10⁵²⁻⁵⁴ erg (~ x1000 of SNe)
- The radiation energy is released around 100 keV = gamma-ray.
- Rapid variability shorter than 1 msec. (compact object ?)
- 2 classes : Long GRBs > 2 sec, and Short GRBs < 2 sec.</p>

Gamma-ray spectrum of prompt emission

Band et al. 1993 **Band function** $N(E) = \begin{cases} A\left(\frac{E}{100 \text{ keV}}\right)^{\alpha} \exp\left(-\frac{E}{E_0}\right) & \text{for } E \leq (\alpha - \beta)E_0, \\ A\left(\frac{E}{100 \text{ keV}}\right)^{\beta} \left(\frac{(\alpha - \beta)E_0}{100 \text{ keV}}\right)^{\alpha - \beta} \exp(\beta - \alpha) & \text{for } E \geq (\alpha - \beta)E_0. \end{cases}$ ∞ Fa GRB 990123 10 Flux (photons · cm⁻². s⁻¹· MeV⁻¹ α: low-energy index 10 10⁰ β : high-energy index 10 E_0 : break energy Fβ Х ISE SD0 10^{-2} **Non-thermal radiation** EL Burst Mode Synchrotron radiation from vFv N_E (erg \cdot cm⁻² \cdot s⁻¹ accelerated electrons... maybe 10-6

10-7

10⁻⁶

0.01

0.1

10

Photon Energy (MeV)

<mark>100</mark>

In the case of $\alpha > -2$, we can determine a peak energy "Epeak = $(2 + \alpha) E_0$ " in the vF_v spectrum.

Spatial distribution of GRBs

Compton Gamma-Ray Observatory launched in 1991. BATSE (Burst And Transient Source Experir detected 2704 GRBs

2704 BATSE Gamma-Ray Bursts

Isotropic spatial distribution

- no concentration to the galactic plane
- brightness distribution is also isotropic

Extra-galactic origin

Discovery of X-ray afterglow (GRB 970228)

Long lasting X-ray transient was discovered by BeppoSAX

Basically Power-law decline in time.

Thanks to the detail localization by X-ray telescope, multi-wavelength observations can be performed by ground-based telescopes

Typical Lightcurve of X-ray Afterglow

Vaughn et al. 2005

A lot of physical phenomena follow the exponential functions.

Decay of radio isotope
$$\frac{dN(t)}{dt} = -\frac{1}{\tau}N(t)$$

Transmittance of radiation $\frac{dN(x)}{dx} = -\mu N(x)$

• Release of charge in Capacitance and Resistance system $R \frac{dQ(t)}{dt} + \frac{Q(t)}{C} = 0$

• Thermal conduction
$$K \frac{dT(t)}{dt} = \alpha(T(t) - T_{cool})$$

• Damped oscillation $m \frac{d^2x(t)}{dt^2} + \beta \frac{dx(t)}{dt} + kx(t) = 0$

Frothy foam on top of beer (ig Nobel Prize 2002)

Power-law function is rather rare case.

Sedov-Taylor Solution (Supernova, nuclear bomb) $R = \xi_0 \left(\frac{E_0}{\rho_0}\right)^{1/5} t^{2/5} \quad D = \frac{2}{5} \xi_0 \left(\frac{E_0}{\rho_0}\right)^{1/5} t^{-3/5}$

Fermi acceleration of cosmic ray $\frac{dN}{dE} \propto E^{-\alpha}$

First redshift measurement (GRB 970508 @ z = 0.835)

Absorption features in bright afterglow spectrum
 Emission and absorption lines of host galaxies

 \succ Ly α break feature in afterglow spectrum

Redshifts are measured for ~ 400 GRBs (2015.6)

Fluence: $S = 10^{-5} \text{ erg/cm}^2$ (gamma-ray) Distance : $d = 2 \times 10^{28} \text{ cm} (z=1)$ $E_{total} = \frac{4\pi d^2 S}{(1+z)} = 2.5 \times 10^{52} \text{ (erg)}$

λ(Å)

14

We could determine the redshift of z=8.26 with spectroscopic observation,

BUT, we could NOT obtain any physical information about the early universe.

Quick obs. with large telescope is required

Compactness Problem

$$E_{total} = \frac{4\pi d^2 S}{(1+z)} = 2.5 \times 10^{52} \text{ (erg)}$$

Large amount of energy = 10⁵² erg
 Rapid time variability = 1 msec

$$R < c \Delta t = (3 \times 10^{10}) \times (10^{-3}) = 3 \times 10^{7} (\text{cm})$$

= 300 (km) Tokyo – Kanazawa
In straight line

Number density of gamma-rays becomes high

$$\gamma + \gamma \rightarrow e^+ + e^-$$
 (pair creation)

Optical depth of gamma-ray scattering

$$\tau_{\gamma\gamma} = \sigma_T \times n \times R$$

= $\sigma_T \times \frac{E_{total} f_p}{\frac{4\pi}{3} R^3 m_e c^2} \times R$
~ $5 \times 10^{16} \gg 1$ Thomson cross section
 $\sigma_T = 6.65 \times 10^{-25} \text{ (cm}^2)$ 1.022 MeV

In theoretically, gamma-rays can not escape from the region. But GRBs are really observed ... Compactness Problem

 $E_{total} \times f_p$

 $f_p = 0.01$

Compactness Problem – solution –

Evidence of relativistic jet (jet break)

Spherical afterglow shows a power-law decline in time. But many cases show the achromatic break from -1 to -2.

Sideway expansion with sound velocity

X-ray lightcurve

Vaughn et al. 2005

GRB Theoretical Model (Fireball Model)

Rees & Meszaros 1992 Piran review 1997

"Rotation energy of BH" or "Gravitational energy of accretion disc"

relativistic outflow

Internal shock \rightarrow electron acceleration \rightarrow synchrotron radiation

 \blacksquare external shock ightarrow the same

Neutrino emission from Fireball Model

2nd topic : Emission mechanism of long GRB Probed by gamma-ray polarization

Study of prompt emission mechanism by gamma-ray polarization with IKAROS-GAP

Daisuke YONETOKU (Kanazawa Univ.) Toshio MURAKAMI (Kanazawa Univ.) Shuichi GUNJI (Yamagata Univ.) Tatehiro MIHARA (RIKEN), Kenji TOMA (Osaka Univ.) & GAP team

Bragg Reflection (~ a few keV :)

(OSO-8 : Crab Nebula, Weisskopf et al. (1978)

Compton Scattering (~ 100 keV)

(e.g. GAP, PoGO Lite, PHENEX)

GAmma-ray burst Polarimeter

Angular distribution of Compton Scat.Geometrical symmetry

 $\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \frac{E^2}{E_0^2} \left(\frac{E_0}{E} + \frac{E}{E_0} - 2\sin^2\theta\cos^2\phi\right)$

- r_0 : classical electron radius
- E_0 : energy of incident photon
- E : energy of scattered photon

Yonetoku et al. (2006, 2011)

Interplanetary Kite-craft Accelerated by Radiation Of the Sun

Data Samples

Konus, Fermi, Swift, WAM, Integral, Mess.

a : 10-1000 keV c : 20-5000 keV b : 20-10000 keV d : 20-200 keV

No.	GRB	Fluence (erg/cm ²)	incident angle	Other Obs.	No.	GRB	Fluence (erg/cm ²)	incident angle	Other Obs.
1	100707A	^a 8.8 × 10 ⁻⁵	93	K,F,W,M	16	110124A		-	K,W
2	100715A		19	K,I,W,M	17	110301A	3 .7 × 10⁻⁵	48	K,F,W
3	100719B		145	K,F	18	110406A	^b 4.8 × 10 ⁻⁵	133	K,W,I,Sw
4	100722A		34	K,F	19	110423A		-	К
5	100804A		63	K,F	20	110428A	^a 2.3 × 10 ⁻⁵	109	K,F,W,Sw
6	100809A		-	К	21	110505?		-	?
7	100820A		34	K,F	22	110510?		-	?
8 🤇	100826A	b 8.0 × 10 ⁻⁴	20	K,F,W,M	23	110514		-	К
9	101014A	^a 2.0 × 10 ⁻⁴	54	K,F	24	110604A	^c 3.1 × 10 ⁻⁵	43	K,W,Sw
10	101021A		41	K,F	25	110625A	^b 6.1 × 10 ⁻⁵	41	K,F,Sw
11	101113A		26	K,F	26	110708A	^d 2 × 10 ⁻⁶	67	K,F,Sw
12	101123A	a 1.3 × 10 ⁻⁴	74	K,F,I,Sw	27	110715A	^b 2.3 × 10 ⁻⁵	88	K,W,Sw
13	101126A		62	K,F	28	110717B		25	F,K
14	101219A	^b 3.0 × 10 ⁻⁶	52	K,Sw	29	110721A	³ 3.5 × 10 ⁻⁵	30	K,F,I,M
15	101231A		63	F	30	110825A	^a 5.4 × 10 ⁻⁵	29	

GRB110301A & GRB110721A

We detected the polarization from two bright GRBs with high significance.

The polarization angles did not change during the prompt GRBs.

Results of Polarization Analyses

GRB	Polarization Degree (%)	Duration T90 (sec)	Incident Angle (deg)	E_p (keV)	fluence (erg cm^{-2})	flux (photon $cm^{-2} s^{-1}$)
100826	27 ± 11	100	20	606^{+134}_{-109}	2.94×10^{-4}	9.03
110721	84^{+16}_{-28}	11	30	$375.5^{+26.5}_{-23.6}$	3.43×10^{-5}	6.71
110301	70 ± 22	7	48	$106.80^{+1.85}_{-1.75}$	3.35×10^{-5}	75.59
110825	< 47	12	29	$233.6^{+21.9}_{-19.9}$	5.06×10^{-5}	6.16
110625	< 56	27	41	190^{+17}_{-14}	6.09×10^{-5}	8.21
100715	< 83	30	19	-	-	-
101014	< 71	30	54	$181.40^{+5.66}_{-5.44}$	1.88×10^{-4}	3.74

90% upper-limit

Significant Polarization was detected from bright 3 GRBs.
 GRB100826A : Polarization angle changed (3.5σ confidence level.)
 GRB110721A & GRB110301A : Polarization angle was stable.

We need the emission model to explain both cases of change and no-change of polarization angle.

Globally Random Magnetic Fields, But Locally Coherent

The change of polarization angle can be explained with patchy structures of smaller than $1/\Gamma$.

Inner Structures may exist in the Jet.

Distribution of polarization

We can explain both cases of change/no-change of pol. angle with the relation between θ_i and 1/G, and also the patches.

Compton Drag Lazzati et al. (2005) & Photospheric Emission

in the frame work of Compton drag and Photospheric emission mode.

Evolution of polarization

- We detected the γ-ray polarization from <u>3 bright GRBs</u>, and set U.L. for 4 GRBs with GRB polarimeter "GAP".
- The emission mechanism of prompt GRBs are probably the synchrotron radiation in the coherent magnetic fields.

(Our results favor theICMART model (Zhang's group). We cannot exclude the photospheric and comptonized emission model)

■ Since the polarization angle rapidly changed, the multiple emission regions and/or the patchy structures with the scale of < 1/Γ may exist in the relativistic jet.</p> 3rd topic : Short Gamma-Ray Bursts and Gravitational Wave Astronomy

LGRBs (T > 2 sec)

- Massive star explosion (M>40M_{sun})
- Associated with Supernovae (energetic Hypernovae)
- Black Hole & relativistic jet

SGRBs (T < 2 sec)

- Coalescence of NS-NS/NS-BH (?)
- Strong GW is radiated.
- Black Hole & relativistic jet (?)

X-ray Afterglow

X-ray afterglow of SGRB is generally dimmer than one of LGRB

e.g. Decay part of the extended emission (exponential decay $\tau \simeq 50$ sec)

Kagawa, DY + (2015)

- 7% (CGRO-BATSE: Bostanci et al. 2013)
- 25% (Swift-BAT: Norris et al. 2010)

Extended emission

- 40% (Swift-BAT+XRT: Kagawa, DY+ 2016)
- ~100% (Swift-XRT: Kisaka+, 2016)

Optical/NIR Afterglow & kilonova/macronova

- Heating by nuclear beta decay of r-process (neutron rich) elements
- Benchmark of future optical/NIR obs.

Location of short GRBs

Berger et al. 2013

kick velocity ~ 100 km/s \rightarrow ~ 0.1 Gyrs

Coalescence of NS-NS/NS-BH is an acceptable scenario

X-ray/ γ -ray Observations for 3 BH-BH (GW 150914, LVT 151012, GW 151226)

X-ray/ γ -ray Counterpart (?) of GW 150914

Fermi-GBM event must be Background Fluctuation

RA (J2000)

s⁻¹ cm⁻²)

16 g

-sigma upper limit (x10⁻⁷

EM counterparts for NS-NS (GW 170817/GRB 170817A)

Macronova/kilonova

Time since gravitational-wave trigger (days)

Blue macronova

With rapid decline in time

- jet direction
- light r-process
- ejecta/cocoon/wind ?

Red (IR) macronova

With rapid decline in time

- equatorial direction
- heavy r-process
- ejecta

Neutrino observations for GW 170817

Unified Picture of GW 170817/GRB 170817A

Event Rate of GW detection from SGRB observation

E_{peak} – Luminosity Correlation of LGRBs/SGRBs

LGRB (DY et al. 2004, 2010) $L_p = 4\pi d_L^2 F_p = A[E_p(1+z)]^{1.6}$

$$\implies \frac{d_L^2}{(1+z)^{1.6}} = \frac{A}{4\pi F_p} \left(E_{peak} \right)^{1.6}$$

SGRB (Tsutsui et al. 2013)

$$L_p = 4\pi d_L^2 F_p = B [E_p(1+z)]^{1.6}$$
$$\longrightarrow \frac{d_L^2}{(1+z)^{1.6}} = \frac{B}{4\pi F_p} (E_{peak})^{1.6}$$

We can use the correlation as the Luminosity/Distance indicator.

Event selection

CGRO/BATSE current burst catalog

- (1) 100 brightest SGRBs with $T_{90} < 2$ sec
- (2) Spectral parameters are obtained for 72 SGRBs.
 (for remaining 28, poor statistics and variable BGD condition)
- (3) We succeeded in calculating the pseudo-z for all 72 SGRBs.

BATSE life time = 9.2 years Fraction of sky coverage = 0.483 Trigger efficiency > 99.988 % for F = 1 ph/cm²/s Effective life time = 4.4 years

HiZ-GUNDAM

High-z Gamma-ray bursts for Unraveling the Dark Ages Mission

Daisuke YONETOKU (Kanazawa University) HiZ-GUNDAM working group

Key science 2: GW astronomy From discovery to understanding

Localization of off-axis SGRB

- Is NS-NS the origin of classical SGRB?
- Understanding of on/off-axis SGRB
- BH formation

intermediate state (Hyper-massive NS/magnetar)

Origin of heavy metals

- production rate of r-process elements
- event rate of NS-NS/BH-NS
- Can we explain solar abundance?

Diversity of macronova

- Geometry of macronova
- Mass distribution of ejecta
- Equation of state
- HMNS/magnetar injects its spin-down energy into ejecta

Discovery Space of Time Domain Astronomy

You may enable to perform "timing correlation analysis" for XRF, Low-luminosity GRB, SN shock breakout, and so on.

Time scale of general GRB observation

- (1) **Discovery of GRB**: in space
- (2) ~ a few hours later: Afterglow search with the small telescope $(0.3 \sim 2 \text{ m})$
- (3) Half a day to 1 day: redshift measurement and physical property Spectroscopic/photometric observation with the medium telescope $(3 \sim 4 \text{ m})$
- (4) After 1 day ~: high dispersion spectroscopy

Observation with a large telescope only if the event is interesting

HiZ-GUNDAM observation strategy

(1) GRB discovery in X-ray band, and send 1st alert of the localization.
(2) Automatically start follow-up obs. with near infrared telescope.
(3) 2nd alert of fine localization (~ 1") and rough redshift (z>5 or z>7).

after that,

(4) Spectroscopic observation with large area telescopes.

Combination with X-ray and NIR for high-z GRB observation

X-ray imaging detector
1 steradian FOV
2~5 arcmin position accuracy
Observation energy E < 10 keV

30cm NIR telescope 30 arcmin FOV Photometric observation in optical & NIR $(0.5 - 2.5 \ \mu m)$

Probing the Reionization History

fraction degree with Gunn-Peterson Trough.

We may need an alternative method.

Lyman-a Forest & Gunn-Peterson Trough z=0.15PO3634+205 7+1 337 z=1.33 z=2.40 1422+231 1=3.635 z=3.63 Q1451-15 z=4.762 z=4.761030+0524 2=6.290 z=6.29 **GP** Trough 64

Probing the Reionization History – 2

Absorption feature = Lorentzian distribution

Ly α absorption cross-section : Peebles (1993), section 23

$$\sigma(\omega) = \frac{3\lambda_{\alpha}\Lambda^2}{8\pi} \frac{(\omega/\omega_{\alpha})^4}{(\omega - \omega_{\alpha})^2 + \Lambda^2 (\omega/\omega_{\alpha})^6/4}$$

In the case of high column density of $\Sigma \sim 10^{20}$ cm⁻², Damping wing structure can be observed. Miralda-Escude (1998)

Cosmic Reionization

Reionization History of the Universe

Merit

- GRB is transient phenomena \rightarrow IGM is not affected by the progenitors
- Optical spectrum is simple power-law \rightarrow Easy to measure the damping wing structure
- The host galaxy is dwarf gal. \rightarrow Less biased observation

Demerit

• GRB is transient phenomena \rightarrow Rapid follow-up observations are required

Wide Field X-ray Imaging Detector

Micro Pore Optics (Lobster Eye Optics)

Backside Illuminated CMOS

l

	Wide field X-ray
Energy Band	0.5 ~ 4 keV
Field of View	> 1 str (full coded)
Position Accuracy	2 arcmin
Sensitivity	10 ⁻¹⁰ erg/cm²/s (for 100 sec)

Alternative Wide Field X-ray Imaging Detector

- Ultra high-gain readout ASICs (64 ch x 16 chips)
- Digital electronics board and communication interface
- Verification test of X-ray Imaging

shift index along X-axis

CIBER-2 Rocket Experiment Lanz et al. (2014)

- NASA's rocket experiment for the near infrared background light
- Telescope Size : 28.5cm cooled telescope \rightarrow 30 cm
- 3 band photometric observation in optical and NIR

\rightarrow Verification for the NIR telescope aboard HiZ-GUNDAM

Flight Configuration

Flight Primary Mirror

Real Time Alert

Iridium Short-Burst-Data (SBD 9603)

Packet Communication Send: 340 byte Receive: 270 byte Delay: $1 \sim 3 \min$

- Duration of non-contact time is less than 15 minutes : $50 \sim 60 \%$, but the longest case is 5 hours
- Almost perfectly covered around Arctic/Antarctic regions.
- We need an additional UHF antenna.

Sendable area fraction of real time alert (400 km otbit)

90

60

30

-30

-60

-atitude [deg]

From

Schedue

- We will propose the HiZ-GUNDAM to the next AO of competitive M-Class Mission.
- Collaboration with TAO, Subaru, Keck, VLT, JWST and TMT
- Multi-Messenger/Multi-Wavelength observatory

X-ray Transient Monitor for GW Sources aboard Kanazawa-SAT³

Launch Target Early FY2019

D. Yonetoku, T. Sawano S. Yagitani, Y. Kasahara, T. Imachi, M. Ozaki, Y. Goto, R. Fujimoto (Kanazawa Univ.) T. Mihara, K. Kyutoku (RIKEN)

K. Yoshida, Y. Kagawa, K. Kawai, M. Ina, K. Ota, Y. Minami (Kanazawa Univ.)

・文部科学省特別経費(代表:八木谷聡,H26-H30)
・科研費基盤(S)(代表:米徳大輔,H28-H32)
・宇宙航空科学技術推進委託費(代表:米徳大輔,H27-H29)
・新学術「重力波天体」(公募研究)(代表:米徳大輔,H25-H28)

Kanazawa-SAT³

 50 cm & 50 kg class of micro-satellite (launch in early FY2019, mission life ~ 3 years)

(1) Wide field X-ray imaging detector

Transient Localization **EX**periment (T-LEX)

Energy Range	2 – 20 keV
Field of View	~ 1.5 str (half coded)
Position Accuracy	~ 15 arcmin
Detector Area	100 cm ²
Time Resolution	8 msec

(2) Gamma-ray trigger detector

Energy Range	20 – 500 keV
Field of View	~ π str
Position Accuracy	N/A
Detector Area	~ 100 cm ²
Time Resolution	8 msec

Thermal-Structure Model

Summaries

◆ Japanese GRB community considers the future GRB mission "HiZ-GUNDAM".

We are developing the 1/10 proto-type model of the X-ray instrument, and the flight model of NIR telescope for CIBER-2 rocket experiment.

 We need a world wide collaboration especially for the NIR telescope system, satellite operation, alert system, and also the driving powers of scientific outputs.
 We strongly hope to collaborate with Space Astronomy Group at KASI.

 We will propose the HiZ-GUNDAM project to the next AO of "competitive medium-class mission" of ISAS/JAXA. (The end of 2018/01)
 We are appreciated if you become working group members before the mission proposal.

We, Kanazawa-Univ., are developing the micro satellite "Kanazawa-SAT³".

Thanks

