Observation of

Coherent Elastic Neutrino-Nucleus Scattering by COHERENT

Kate Scholberg, Duke University Gora January 8, 2018

OUTLINE

- -Coherent elastic neutrino-nucleus scattering (CEvNS)
- Why measure it? Physics motivations (short and long term)
- How to measure CEvNS
- The COHERENT experiment at the SNS
- First light with CsI[TI]
- Status and prospects for COHERENT

OUTLINE

-Coherent elastic neutrino-nucleus scattering (CEvNS)

- Why measure it? Physics motivations (short and long term)
- How to measure CEvNS
- The COHERENT experiment at the SNS
- First light with CsI[TI]
- Status and prospects for COHERENT

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$\gamma + A \rightarrow \gamma + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Nucleon wavefunctions in the target nucleus are **in phase with each other** at low momentum transfer

For $QR \ll 1$, [total xscn] ~ A² * [single constituent xscn]

This is *not* coherent pion production, a strong interaction process *(inelastic)*

\begin{aside}

Literature has CNS, CNNS, CENNS, ...

- I prefer including "E" for "elastic"... otherwise it gets frequently confused with coherent pion production at ~GeV neutrino energies
- I'm told "NN" means "nucleon-nucleon" to nuclear types
- CEvNS is a possibility but those internal Greek letters are annoying

Sevens "...
Sevens "...

\end{aside}

First proposed 43 years ago!

PHYSICAL REVIEW D

Coherent effects of a weak neutral current

VOLUME 9, NUMBER 5

Daniel Z. Freedman[†]

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

1 MARCH 1974

Early theory explorations & proposals

Progress of Theoretical Physics, Vol. 54, No. 5, November 1975

Supernova Explosion and Neutral Currents of Weak Interaction

Katsuhiko SATO

Research Institute for Fundamental Physics Kyoto University, Kyoto

(Received May 12, 1975)

Ann. Rev. Nucl. Sci. 1977. 27: 167–207 Copyright © 1977 by Annual Reviews Inc. All rights reserved

THE WEAK NEUTRAL CURRENT AND ITS EFFECTS IN STELLAR COLLAPSE

Daniel Z. Freedman

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11790

David N. Schramm¹ and David L. Tubbs² Enrico Fermi Institute (LASR), University of Chicago, Chicago, Illinois 60637

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky

Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany (Received 21 November 1983)

Physics Letters B 269 (1991) 407-411

Low-energy neutrino detection and precision tests of the standard model

Lawrence M. Krauss ^{1,2} Center for Theoretical Physics and Department of Astronomy, Sloane Laboratory, Yale University, New Haven, CT 06511, USA

The cross section is cleanly predicted in the Standard Model

$$G_V, G_A$$
: SM weak parameters
vector $G_V = g_V^p Z + g_V^n N$,
axial $G_A = g_A^p (Z_+ - Z_-) + g_A^n (N_+ + N_-)$

$$g_V^p = 0.0298 \ g_V^n = -0.5117 \ g_A^p = 0.4955 \ g_A^n = -0.5121.$$

The cross section is cleanly predicted in the Standard Model

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{\pi} F^2(Q) \left[(G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_\nu} \right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_\nu^2} \right]$$

E_v: neutrino energy
T: nuclear recoil energy
M: nuclear mass
Q = $\sqrt{(2 \text{ M T})}$: momentum transfer

F(Q): nuclear **form factor**, <~5% uncertainty on event rate

For $T << E_{y}$, neglecting axial terms: $\frac{d\sigma}{dT} = \frac{G_F^2 M}{2\pi} \frac{Q_W^2}{4} F^2(Q) \left(2 - \frac{MT}{E_T^2}\right)$ $Q_W = N - (1 - 4\sin^2 \theta_W)Z$: weak nuclear charge Cross section (10⁻⁴⁰ cm²) $_{\rm co}$ $\sin^2 heta_W=0.231$, Averaged over stopped- πv flux so protons unimportant Cs Ge $\geq \left| \frac{d\sigma}{\nu T} \propto N^2 \right|$ 10 Line: F(Q)=1 Na Green: Klein-Nystrand FF w/uccty 1¹0 50 10 20 30 40 60 70 80 90 Neutron number

Large cross section (by neutrino standards) but hard to observe due to tiny nuclear recoil energies:

The only experimental signature:

> tiny energy deposited by nuclear recoils in the target material

→ WIMP dark matter detectors developed over the last ~decade are sensitive to ~ keV to 10's of keV recoils

OUTLINE

- -Coherent elastic neutrino-nucleus scattering (CEvNS)
- Why measure it? Physics motivations (short and long term)
- How to measure CEvNS
- The COHERENT experiment at the SNS
- First light with CsI[TI]
- Status and prospects for COHERENT

CEvNS: what's it good for?

- Dark matter direct-detection background
 - Well-calculable cross section in SM:
 - $sin^2\theta_{Weff}$ at low Q
 - Probe of Beyond-the-SM physics
 - Non-standard interactions of neutrinos
 - New NC mediators
 - Neutrino magnetic moment
 - New tool for sterile neutrino oscillations
 - Astrophysical signals (solar & SN)
 - Supernova processes
 - Nuclear physics:
 - Neutron form factors
 - g_A quenching
 - Possible applications (reactor monitoring)

DM`

direct detection

So

2 Many

Things

The so-called "neutrino floor" (signal!) for DM experiments

J. Billard, E. Figueroa-Feliciano, and L. Strigari, arXiv:1307.5458v2 (2013).

Can improve ~order of magnitude beyond CHARM limits with a first-generation experiment (for best sensitivity, want *multiple targets*)

More studies: see https://sites.duke.edu/nueclipse/files/2017/04/Dent-James-NuEclipse-August-2017.pdf

Supernova neutrinos in tonne-scale DM detectors

OUTLINE

- Neutrinos and neutrino interactions
- Coherent elastic neutrino-nucleus scattering (CEvNS)
- Why measure it? Physics motivations (short and long term)
- How to measure CEvNS
- The COHERENT experiment at the SNS
- First light with CsI[TI]
- Status and prospects for COHERENT

How to detect CEvNS?

You need a neutrino source and a detector

What do you want for your v source?

- ✓ High flux
- ✓ Well understood spectrum
- ✓ Multiple flavors (physics sensitivity)
- ✓ Pulsed source if possible, for background rejection
- ✓ Ability to get close
- ✓ Practical things: access, control, ...

Both cross-section and maximum recoil energy increase with neutrino energy:

Want energy as large as possible while satisfying coherence condition: $Q \lesssim \frac{1}{R}$ (<~ 50 MeV for medium A)

Stopped-Pion (\piDAR) Neutrinos

2-body decay: monochromatic 29.9 MeV v_{μ} PROMPT

 $\mu^+ \to e^+$ ν_e

3-body decay: range of energies between 0 and m_/2 DELAYED (2.2 μs)

Comparison of pion decay-at-rest v sources

Spallation Neutron Source

Oak Ridge National Laboratory, TN

552

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

The neutrinos are free!

Time structure of the SNS source

60 Hz pulsed source

The SNS has large, extremely clean DAR ν flux

0.08 neutrinos per flavor per proton on target

Backgrounds

Usual suspects:

- cosmogenics
- ambient and intrinsic radioactivity
- detector-specific noise and dark rate

Neutrons are especially not your friends*

Steady-state backgrounds can be *measured* off-beam-pulse ... in-time backgrounds must be carefully characterized

A "friendly fire" in-time background: Neutrino Induced Neutrons (NINs)

$$v_{e} + {}^{208}Pb \rightarrow {}^{208}Bi^{*} + e^{-} CC$$

$$1n, 2n \text{ emission}$$

$$v_{x} + {}^{208}Pb \rightarrow {}^{208}Pb^{*} + v_{x} NC$$

$$1n, 2n, \gamma \text{ emission}$$

- potentially non-negligible background from shielding
- requires careful shielding design
- large uncertainties (factor of few) in xscn calculation
- [Also: a signal in itself, e.g, HALO SN detector]

OUTLINE

- Neutrinos and neutrino interactions
- Coherent elastic neutrino-nucleus scattering (CEvNS)
- Why measure it? Physics motivations (short and long term)
- How to measure CEvNS

- The COHERENT experiment at the SNS

- First light with CsI[TI]
- Status and prospects for COHERENT

The COHERENT collaboration

http://sites.duke.edu/coherent

COHERENT CEvNS Detectors

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)
Csl[Na]	Scintillating crystal	14.6	19.3	6.5
Ge	HPGe PPC zap	10	22	5
LAr	Single-phase flast	22	29	20
Nal[TI]	Scintillating crystal	185*/ 2000	28	13

Multiple detectors for N² dependence of the cross section

Expected recoil energy distribution

OUTLINE

- Neutrinos and neutrino interactions
- Coherent elastic neutrino-nucleus scattering (CEvNS)
- Why measure it? Physics motivations (short and long term)
- How to measure CEvNS
- The COHERENT experiment at the SNS
- First light with CsI[TI]
- Status and prospects for COHERENT

The CsI Detector in Shielding in Neutrino Alley at the SNS

A hand-held detector!

Almost wrapped up...

Layer	HDPE*	Low backg. lead	Lead	Muon veto	Water
Thickness	3"	2"	4"	2"	4"
Colour		///			

The First COHERENT Result: CsI[Na]

Scintillating crystal

- high light yield
- low intrinsic bg
- rugged and stable
- room temperature
- inexpensive

2 kg test crystal @U. Chicago. Amcrys-H, Ukraine

First light at the SNS with 14.6-kg Csl[Na] detector

D. Akimov et al., Science, 2017

http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

Signal, background, and uncertainty summary numbers $6 \le PE \le 30, 0 \le t \le 6000 \text{ ns}$

Beam ON coincidence window	547 counts
Anticoincidence window	405 counts
Beam-on bg: prompt beam neutrons	7.0 ± 1.7
Beam-on bg: NINs (neglected)	4.0 ± 1.3
Signal counts, single-bin counting	136 ± 31
Signal counts, 2D likelihood fit	134 ± 22
Predicted SM signal counts	173 ± 48

Uncertainties on signal and back		
Event selection	5%	
Flux	10%	
Quenching factor	25%	
Form factor	5%	
Total uncertainty on signal	28%	
Beam-on neutron background	25%	

Neutrino non-standard interaction results for current CsI data set:

*CHARM constraints apply only to heavy mediators

OUTLINE

- Neutrinos and neutrino interactions
- Coherent elastic neutrino-nucleus scattering (CEvNS)
- Why measure it? Physics motivations (short and long term)
- How to measure CEvNS
- The COHERENT experiment at the SNS
- First light with CsI[TI]
- Status and prospects for COHERENT

What's Next for COHERENT?

COHERENT CEvNS Detector Status and Near Future

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	Data-taking start date	
Csl[Na]	Scintillating crystal	14.6	20	6.5	9/2015	
Ge	HPGe PPC	10	22	5	2018	Ge
LAr	Single- phase	22	29	20	12/2016, upgraded summer 2017	
Nal[TI]	Scintillating crystal	185*/ 2000	28	13	*high-threshold deployment summer 2016	Na

- CsI will continue running
- 185 kg of Nal installed in July 2016
 - taking data in high-threshold mode for CC on ¹²⁷I
 - PMT base modifications to enable low-threshold CEvNS running
- LAr single-phase detector installed in December 2016
 - upgraded w/TPB coating of PMT & Teflon, running since May 2017
- First Ge detectors to be installed early 2018

COHERENT CEvNS Detector Status and Farther Future

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	Data-taking start date	Possible Future
Csl[Na]	Scintillating crystal	14.6	20	6.5	9/2015	Finish data-taking
Ge	HPGe PPC	10	22	5	2017	Additional detectors, 2.5-kg detectors
LAr	Single- phase	22	29	20	12/2016, upgraded summer 2017	Expansion to ~1 tonne scale
Nal[TI]	Scintillating crystal	185*/ 2000	28	13	*high-threshold deployment summer 2016	Expansion to 2 tonne, up to 9 tonnes

+ concepts for other targets

COHERENT Non-CEvNS Detectors ("In-COHERENT")

Sandia Neutron Scatter Camera	Multiplane liquid scintillator	Neutron background	Deployed 2014-2016
SciBath	WLS fiber + liquid scintillator	Neutron background	Deployed 2015
Nal[TI]	Scintillating crystal	v_e CC	High-threshold deployment summer 2016
Lead Nube	Pb + liquid scintillator	NINs in lead	Deployed 2016
Iron Nube	Fe + liquid scintillator	NINs in iron	Deployed 2017
MARS	Plastic scintillator and Gd sandwich	Neutron background	Under deployment
Mini-HALO	Pb + NCDs	NINs in lead	In design

And many more ideas and activities for Neutrino Alley and beyond...

- Inelastic CC and NC in Ar, Pb, ...
- Other crystal or scint deployments in CsI shield
- Flux normalization using D₂O (well known xscn)
- Ancillary measurements: QF
- Directional detectors

• ...

Summary

• CEvNS:

- large cross section, but tiny recoils, $\alpha~\text{N}^{2}$
- accessible w/low-energy threshold detectors, plus extra oomph of stopped-pion neutrino source
- DM bg, SM test, supernova, nuclear physics, ...
- First measurement by COHERENT CsI[Na] at the SNS
- Low-hanging fruit: meaningful bounds on v Non-Standard Interactions

- It's just the beginning....
- Multiple targets, upgrades and new ideas in the works!
- Other CEvNS experiments will soon join the fun
 (CONNIE, CONUS, MINER, RED, Ricochet, Nu-cleus...)

Extras/backups

The First COHERENT Result: CsI[Na]

Scintillating crystal

- high light yield
- low intrinsic bg
- rugged and stable
- room temperature
- inexpensive

2 kg test crystal @U. Chicago. Amcrys-H, Ukraine

CsI quenching factor measurements at TUNL w/ neutrons

