(1) SK-Gd 計画のためのGd(n,γ) 反応測定(2)酸素・炭素の巨大共鳴からのγ線崩壊の研究

作田 誠(岡山大学理) @ SN Workshop, 2019.01.08

<u>C01(岡大)結果報告</u>

1. (1部)SK-Gd 計画のためのGd(n, γ) 測定とANNRI-Gdモデル構築 2. (2部)E398 C,O(p,p') 粒子崩壊、電磁崩壊での γ 線放出率測定 3. Evaluation of SN O,C($v,v'\gamma$) events

4. まとめ

(1部) SK-Gd計画のための^{157,155,nat}Gd(n,γ) γ線エネルギー 分布・相関測定とANNRI-Gd MCモデル構築

 Gamma ray spectrum from thermal neutron capture on ¹⁵⁷Gd K. Hagiwara, T. Yano, T. Tanaka, M.S. Reen, P.K. Das, S. Lorenz, I. Ou, T. Sudo, Y. Yamada, T. Mori, T. Kayano, R. Dhir, Y. Koshio, M. Sakuda, A. Kimura, S. Nakamura, N. Iwamoto, H. Harada, M. Wurm, W. Focillon, M. Gonin, A. Ali and G. Collazuol.

Prog. Theor. Exp. Phys. (accepted on December 25, 2018) (29 pages), arXiv:1809.02664v1 [nucl-ex]

 Analysis of Gd(n,gamma) reaction with 155, 157 and natural Gd targets taken with JPARC-ANNRI and development of Gd(n,gamma) decay model for Gddoped neutron/neutrino detectors Ali Ajmi, T. Tanaka, K. Hagiwara, T. Sudo, <u>M. Reen</u>, P.K. Das, R. Dhir, Y. Yamada, I. Ou, T. Mori, T. Kayano, Y. Koshio, M. Sakuda, T. Yano, A. Kimura, S. Nakamura, N. Iwamoto, H. Harada, S. Lorenz, M. Wurm, W. Focillon, M. Gonin and G. Collazuol.

Proceedings of Science (ICHEP2018) 120 (4 pages).

 \rightarrow ^{155, nat}Gd In preparation for PTEP.

3.2γ角度相関:田中、Goux 修士論文

$$\frac{\mathrm{d}P(E_a, E_b)}{\mathrm{d}E} \propto \rho(E_b) \times \underbrace{2\pi E_{\gamma}^{2L+1} f_{XL}(E_{\gamma})}_{T_{XL}(E_{\gamma})}.$$

このGdモデルは、既にSK-Gd計画で使われている。

^{157,155}Gd(n,γ):data and our ANNRI-Gd model

• 157 Gd(n, γ) E γ spectrum

¹⁵⁵Gd(n, γ) E γ spectrum

^{157,155}Gd(n, y)での y-y角相関

^{157,155}Gd(n, y)での y-y角相関

大部分の連続スペクトルのγ-γ角相関は「ない」という結果を得た。

(2部) RCNP E398実験

- ¹²Cと¹⁶Oは軽い安定原子核の典型である。ニュートリノ実験、素粒 子原子核実験の標的として使われる。
 - ✓ [原子核物理] 原子核反応での巨大共鳴からのγ線生成率は定量的には分かってない。→測定する意義あり。

粒子(強い)崩壊と電磁崩壊の両方のγ線放出率を測定できた(世界初)。

✓ [超新星爆発のニュートリノ検出] 中性カレント事象は、2番目に多い信号(酸素の場合)、 v_{μ}, v_{τ} の情報、重要な量である。→評価する。

今週に¹²C(p,p') 粒子崩壊・γ線放出率 論文投稿(M.Reen博士論文)

Measurement of γ rays from the giant resonances excited by ${}^{12}C(p,p')$ reaction at 392 MeV and 0°

M. S. Reen,^{1,*} I. Ou,¹ T. Sudo,¹ Y. Yamada,¹ T. Shirahige,¹ D. Fukuda,¹ T. Mori,¹ Y. Koshio,¹ M. Sakuda,^{1,†} A. Tamii,^{2,‡} T. Ito,² M. Miura,² N. Aoi,² M. Yosoi,² E. Ideguchi,² T. Suzuki,² T. Yamamoto,² C. Iwamoto,³ T. Kawabata,⁴ S. Adachi,⁵ M. Tsumura,⁵ M. Murata,⁵ T. Furuno,⁵ H. Akimune,⁶ T. Yano,⁷ T. Suzuki,⁸ and R. Dhir⁹
¹Department of Physics, Okayama University, 700-8530 Okayama, Japan
²Research Center for Nuclear Physics (RCNP), Osaka University, 567-0047 Osaka, Japan

³Center for Nuclear Study, Tokyo University, 113-0033 Hongo, Japan

⁴Department of Physics, Osaka University, 567-0043 Toyonaka, Japan.

⁵Department of Physics, Kyoto University, 606-8502 Kyoto, Japan

⁶Department of Physics, Konan University, 658-8501 Hyogo, Japan

⁷Department of Physics, Kobe University, 657-8501 Hyogo, Japan

⁸Department of Physics, Nihon University, 263-8522 Chiba, Japan

⁹Department of Physics and Nanotechnology, SRM University, 603203 Kancheepuram, India (Dated: December 16, 2018)

We have measured both the differential cross section $(\sigma_{p,p'} = d^2 \sigma / d\Omega dE_x)$ and the γ -ray emission probability $(R_{\gamma}(E_x) = \sigma_{p,p'\gamma} / \sigma_{p,p'})$ from the giant resonances excited by ¹²C(p, p') reaction at 392 MeV and 0°, using the magnetic spectrometer and an array of NaI(Tl) counters. The absolute value of $R_{\gamma}(E_x)$ was calibrated using the well known γ -ray emission probability from ¹²C*(15.11 MeV,1⁺, T = 1) and ¹⁶O*(6.9 MeV, 2⁺, T = 0) states within 5% uncertainty. We have found that $R_{\gamma}(E_x)$ starts from zero at $E_x = 16$ MeV and increases up to $47.9 \pm 0.5\% \pm 3.5\%$ at $E_x = 27$ MeV. After 3-body decay threshold ($E_x = 27.2$ MeV) is reached, $R_{\gamma}(E_x)$ begins to decrease. We have also compared the measured values of $R_{\gamma}(E_x)$ with the statistical calculations based on Hauser-Feshbach formalism in the energy range $E_x = 16 - 32$ MeV.

RCNP磁気スペクトロメータ "Grand Raiden" 原子核の励起エネルギーE_x を50keV精度で測定できる。

磁気スペクトロメータ Grand Raiden

 \rightarrow E_x = 392MeV - E_{p'}

P=eBR

曲率から散乱陽子の エネルギー(Ep')を計算

原子核に与えた運動エネルギー(励起エネルギー)を精密に測定できる

γ線検出器

NaI(Tl) scintillator+PMT (2"×2"×6")

ターゲットと陽子ビームの散乱によって出てくる信号 (γ線)を検出

→γ線が検出器内でのエネルギー損失を最終的に電気信号に変え測定

NaI(TI)のエネルギー線形性(E_{γ} =1-34MeV)の 実験前確認

2次元:E_x-E_y 分布 粒子崩壊と電磁崩壊の探索領域

14

$\gamma線スペクトルをE_x毎に測定、粒子崩壊の確認(¹²C)$

12

粒子崩壊での γ 線放出率($R_{\gamma}(E_x) = \sigma_{\rho,\rho\gamma}/\sigma_{\rho,\rho}$)

■ データ(---)は統計計算(---)より30-40%低い。統計計算=角運動 量保存を考慮し、光学模型の下で透過率(E_x→崩壊)を計算する。

$$T(E_x \to a + (A, i)) = \sum_{S=|J_A^i - s_a|}^{J_A^i + s_a} \sum_{L=|J_x - S|}^{J_x + S} T_L^a(\epsilon_a),$$

ここからはPreliminary

¹²C 直接電磁崩壞解析

(1) E_{γ} では信号は見えない。 (2) E_x - E_{γ} では見える。 E_x - $E_{\gamma} = 0$ corresponds to the direct decay events.

19

20

Check for 15.1MeV (14.9<E_x<15.4MeV)

Ú大共鳴(E_x=16-32MeV)からの直接電磁崩壊測定 *E_x-E_y*分布で信号が見える。

■ ¹²Cの巨大共鳴(E_x=16-32MeV)は*E_y* = 11-32 MeV のγ線放出 率0.37± 0.04± 0.04%を持つ。

17 直接電磁崩壊の測定 ¹⁶0

酸素の場合も、見える。

x 10⁻² **R**_{yo}(**E**_x)

3. SN v's の事象数評価

ESTIMATION OF SUPERNOVA NEUTRINO EVENTS

E398 results are applied for the estimation of $N_{NC_{\nu}}$ for Super-K and KamLAND.¹² The expected number of events from the core-collapse: $N_i = Flux(v_i) \times n_{target} \times \sigma_i$ Where $Flux(v_j) = \frac{L_{v_i}}{\langle E_v \rangle} \frac{1}{4\pi D^2}$ and σ_i is the cross section for reaction *i* D = 10 kpcKamLAND (1kton) SK (32.48kton) Total Gravitational Energy $L = 3 \times 10^{53} \text{ ergs}$ n_{target} is number of targets $\overline{\nu}_{\tau}$ n_{12C} :4.30×10³¹ n_{16O} :1.09×10³³ $n_p: 8.60 \times 10^{31}$ $n_p: 2.17 \times 10^{33}$ L divided equally among all species

KamLAND collaboration: Phys. Rev. C 84 (2011) 035804.

Now, we need cross section information

Carbon case:

- 15.1MeVの違いはCross sectionの違いか。
- E_x>16MeVについては、我々のデータのみ。ただ、15.1MeV に比べて小さい。

$$N_{\gamma}^{NC} = n_{tar.} \int_{0}^{E_{\nu}^{max}} dE_{\nu} \frac{d\Phi}{dE_{\nu}}(E_{\nu}) \left[\int_{E_{x}=16 \text{ MeV}}^{E_{x}=32 \text{ MeV}} dE_{x} \frac{d\sigma(E_{x}, E_{\nu})}{dE_{x}} \times R_{\gamma}(E_{x}) \right]$$

	Present work				Previous work
Reaction	MB	FD	NK1	NK2	(KamLAND collab.)
$p(\bar{v}_e, e^+)n$	303	301	129	116	KamLAND Collab.
$^{12}C(\nu,\nu')^{12}C^*(15.1 \text{ MeV})$	45	47	15	14	For NC events
$^{12}C(v, v')^{12}C^*(E_x > 16 \text{ MeV})$	7	9	1.1	1.2	F.D., T = 8 MeV

Table 4.2 Expected number of neutrino events from a core-collapse siFor CC eventspc tobe detected at KamLAND (1kton).F.D., T=5 MeV

C01の活動の中での2019まとめ

RCNP E398 実験

- 炭素・酸素原子核の巨大共鳴の粒子崩壊でのγ線放出率:¹²C論文投稿、¹⁶O論文準備
- ・炭素・酸素原子核の巨大共鳴の電磁崩壊でのγ線生成率:系統誤差のチェック要。
- 粒子崩壊と電磁崩壊と組み合わせ、巨大共鳴崩壊の原子核物理としてのより良い理解。巨大 共鳴の直接崩壊Ey=16-35MeVの生成率は、実験屋にとっては2次粒子(n,p,y)の相互作用とし て重要。
- E398 実験結果を使った応用
 - ・ 超新星爆発でのニュートリノ炭素・酸素中性カレント事象数を出す。
 - 中里/鈴木GrのFlux+鈴木(俊)断面積計算+E398実験結果で系統的な評価(3月国際会 議までに詰める)
- SK-Gd計画のための^{157,155,nat}Gd(n,γ)解析とモデル作り
 - ¹⁵⁷Gd(n,γ)データ・モデルはPTEP受理された。
 - ^{155,nat}Gd(n,γ)論文書き、進行中。
 - 2γ相関解析進行中。