連星進化モデルに基づく SN 1987Aの多次元数値シミュレーション

中村 航(福岡大学)

滝脇知也(国立天文台)、固武慶(福岡大学)

新学術「地下素核研究」第5回超新星ニュートリノ研究会 @ NAOJ Jan. 7-8, 2019

SN 1987A - the most well observed supernova

✓ emerged in LMC (D ~ 50 kpc)

SN 1987A - the most well observed supernova

✓ emerged in LMC (D ~ 50 kpc)

✓ EM light curve & spectra → E_{exp} ~ 1.2 foe, M_{Ni} ~ 0.07 M_{sun}

SN 1987A - the most well observed supernova

✓ emerged in LMC (D ~ 50 kpc)

✓ EM light curve & spectra → E_{exp} ~ 1.2 foe, M_{Ni} ~ 0.07 M_{sun}

✓ neutrino detection!

SN 1987A - an anomalous supernova

- ✓ red → blue supergiant progenitor
 Sk 69°202
- ✓ chemical anomalies: He & N-rich (CNO process)
 Ba-rich (s-process)
- ✓ triple-ring nebula
 → signature of rotation?

Early Models of SN 1987A Progenitor

✓ Single star models :

- extreme-mass-loss models (*Maeder '87; Wood & Faulkner '88*)
- helium-enrichment models (Saio+'88)
- low-metallicity models (Arnett'87; Hillebrandt+'87; Truran & Weiss'87)
- rapid-rotation models (*Weiss+'88; Ramadurai & Wiita'89; Langer'91*)
- restricted-convection models (*Woosley*+'88; *Langer*+'89; *Weiss*'89)

✓ Binary models :

- accretion models (*Maeder '87; Wood & Faulkner '88*)
- companion models (*Fabian*+'87; *Joss*+'88)
- merger models (Barkat & Wheeler '89; Podsiadlowski & Joss '89; De Loor & Vanbeveren '92)

(see sec. 3 & 4 in *Podsiadlowski '92* for a review)

Slow Merger Scenario - the triple-ring nebula

Ivanova+'02; Morris and Podsiadlowski '07

Slow Merger Scenario - new progenitor models

Urushibata+'17; Menon & Heger'17

Slow Merger Scenario - new progenitor models

Urushibata+'17; Menon & Heger'17

We use the best-fit model (14 + 9 Msun \rightarrow 18.3 Msun) from Urushibata+'17 for our core-collapse simulation.

Progenitor Model

✓ Density and "compactness" profiles of our SN 1987A progenitor model (m14) compared with 12, 15, and 20 Msun progenitors from Woosley, Heger, & Weaver '02.

Numerical Scheme for Core-Collapse Simulation

✓ **<u>3DnSNe code</u>** (*Takiwaki+'12,'14,'18*) with some updates:

- Isotropic Diffusion Source Approximation (IDSA; *Liebendoerfer+'09*) scheme for multi-energy 3-flavor (ve, ve, ve, ve) neutrino transport
- state-of-the-art neutrino opacities (*Kotake*+'18)
- EoS: LS220 + Boltzmann gas
- 13-α (He-Ni) nuclear network_s
 - \rightarrow nucleosynthesis
 - + energy feedback

	Model	Weak Process or Modification	References
	$\operatorname{set1}$	$\nu_e n \rightleftharpoons e^- p$	Bruenn (1985)
		$\bar{\nu}_e p \rightleftharpoons e^+ n$	Bruenn (1985)
		$\nu_e A' \rightleftharpoons e^- A$	Bruenn (1985)
2	20	$\nu N \rightleftharpoons \nu N$	Bruenn (1985)
g	22	$ u A \rightleftharpoons u A$	Bruenn (1985), Horowitz (1997)
		$\nu e^{\pm} \rightleftharpoons \nu e^{\pm}$	Bruenn (1985)
		$e^- e^+ \rightleftharpoons \nu \bar{\nu}$	Bruenn (1985)
\frown	~k	$NN \rightleftharpoons u ar{ u} NN$	Hannestad & Raffelt (1998)
	set2	$ u_e A \rightleftharpoons e^- A' $	Juodagalvis et al. (2010)
	set3a	$ u_e + ar{ u}_e \rightleftharpoons u_x + ar{ u}_x$	Buras et al. (2003); Fischer et al. (2009)
	set3b	$ u_x + \nu_e(\bar{\nu_e}) \rightleftharpoons \nu'_x + \nu'_e(\bar{\nu}'_e) $	Buras et al. (2003); Fischer et al. (2009)
	set4a	$ u_e n \rightleftharpoons e^- p, \;\; ar{ u_e} p \rightleftharpoons e^+ n$	Martínez-Pinedo et al. (2012)
	set4b	$NN \rightleftharpoons \nu \bar{\nu} NN^*$	<u>Fischer</u> (2016)
	set5a	$ u_e n \rightleftharpoons e^- p, \ \ ar{ u}_e p \rightleftharpoons e^+ n, u N \rightleftharpoons u N$	Horowitz (2002)
	set5b	$m_N ightarrow m_N^*$	$\underline{\text{Reddy et al.}} (1999)$
	set6a	$g_A ightarrow g_A^*$	Fischer (2016)
	set6b	$\nu N \rightleftharpoons \nu N$ (Many-body and Virial corrections)	Horowitz et al. (2017)
	set6c	$\nu N \rightleftharpoons \nu N$ (Strangeness contribution)	Horowitz (2002)

Results of 2D Simulations

 Slightly different results between models with different input of microphysics (e.x., strangeness contribution).

✓ Successful shock revival at ~0.25 s.

 ✓ Eexp ~ 0.36-0.5 foe, MNi ~ 0.035-0.05 Msun (obs: Eexp ~ 1.2 foe, MNi ~ 0.07 Msun).

2D/3D CCSN simulations - previous works

2D/3D CCSN simulations - previous works

Comparison between 2D and 3D Simulations

Comparison between 2D and 3D Simulations

- ✓ 2D model: shock revival aided by strong SASI (sloshing) motion.
- ✓ 3D model: nearly spherical shock structure. Unfortunately, the explosion is very weak (*E*exp ~ 0.12 foe and *M*Ni < 0.01 *M*sun at 0.5 s after bounce).

What makes the *weak* explosion in 3D?

✓ Neutrino luminosity and average energy?

✓ Spatial resolution? $n(\theta) = 128$ in 2D, $n(\theta)*n(\varphi) = 64*128$ in 3D

Rotation?

Rotation?

✓ Our progenitor model is rotating very slowly (Ω_0 ~0.02 rad/s in the Fe core).

✓ 2D simulations for s20.0 progenitor with a variety of core rotation present more energetic explosions for more rapidly rotating models.

Summary

- ✓ SN 1987A:
 - a peculiar core-collapse supernova
 - red to blue evolution, chemical anomalies, and the triple-ring nebula
 - *E*exp ~ 1.2 foe, *M*Ni ~ 0.07 *M*sun
- ✓ A progenitor model from *Urushibata+'17*:
 - based on slow-merger scenario
 - well reproduces observational features
- ✓ Self-consistent 2D & 3D simulation:
 - 3DnSNe code with state-of-the-art inputs
 - both 2D & 3D models successfully revive shocks
 - *E*exp ~ 0.36-0.5 foe, *M*Ni ~ 0.035-0.05 *M*sun in 2D (relatively strong)
 - *E*exp ~ 0.12 foe and *M*Ni < 0.01 *M*sun (weak)
- ✓ What is missed?
 - rotation? spatial resolution?