

KamLAND-Zen

7 March 2019

Aoba Science Hall, Tohoku University

Kunio Inoue Research Center for Neutrino Science, Tohoku University

KamLAND(-Zen) collaboration

Japan

Tohoku University, RCNS
University of Tokyo, Kavli IPMU
Osaka University
Tokushima University
Kyoto University

US

University of California Berkeley
University of Tennessee
Triangle University Nuclear Laboratory
University of Washington
Massachusetts Institute of Technology
Virginia Polytechnic Institute and State University
University of Hawaii
Boston University

Netherland

Nikhef, University of Amsterdam

* Second affiliation is not listed.

Collaboration meeting @MIT

~50 physicists

We chose ¹³⁶Xe as it can be loaded in LS up to ~3 wt%.

KamLAND-Zen

90% enriched ¹³⁶Xe 320kg for phase-I 380kg for phase-II

largest amount so far

745kg for Zen 800 (started in January)

136**X**e

Noble gas

Centrifugal enrichment possible

 $Q_{\beta\beta}=2459 \text{ keV}$

(below ²⁰⁸TI 3198-5001 keV)

Advantages of using KamLAND

O low cost and quick start

(running detector)

1) BG can be identified

(full active thick shielding)

2 In-situ purification possible

(liquid media)

3 On/Off measurements possible

(xenon is removable)

4 multi-purpose

(geo-neutrino)

(5) easily scalable

(mini-balloon)

Timeline of KamLAND-Zen

Thanks to full active apparatus,

Dominant 1 BG identified as 110mAg

Xenon can be degassed from Xe-LS. And ¹³⁶Xe ³on/off measurement has been demonstrated. (useful for signal confirmation)

Visible Energy (MeV)

KamLAND-Zen 400 Phase 1+2 combined

(sensitivity 5.6×10^{25} yr)

It also provides upper limit of m_{lightest} at 180-480 meV.

PRL117, 082503 (2016)

Big leap toward IH region!

Geo-neutrino observation may conclude primordial meteorite of the earth, and dynamics of the mantle!!

Yes, KamLAND-Zen has diverse physics targets

"Advantages of using KamLAND" have been almost demonstrated;

- Iow cost and quick start (running detector)
- BG can be identified (full active thick shielding)
- 2 In-situ purification possible (liquid media)
- ③ On/Off measurements possible (xenon is removable)
- 4 multi-purpose (ex. geo-neutrino)
- 5 easily scalable (mini-balloon)

ran in 2 years

110mAg identified

^{110m}Ag removed

BG confirmed by degassing

leading geo- ν

5 easily scalable

double size mini-balloon fabrication

cleaning, cleaning and cleaning as usual

Example of improvements

before

keep staying away goggle welding machine cover sheet glove on glove laundry twice a day clean underwear

changing room in a clean room

dust visualization more neutralizer

New mini-balloon has been installed in August 2016 spent $1+\alpha$ yrs for fabrication

Characterization confirmed that the mini-balloon is cleaner!!

Measures we took worked! preliminary $x1E-12 g/g_{film}$ ²³²Th 238 2 Target intrinsic This time* 31 + -75.3 + -0.8~1/10 Zen 400 1st 14 + -179 + -3Yes, cleaner! Zen 400 2nd 46.1+-4 336+-2

At the same time, we noticed;

: - 32.9 ± 0.2 L/day Time variation of Indications of leak; Upper $(\cos\theta > 0.4)$: + 0.5 ± 0.2 L/day Cone part $(\cos \theta > 0.7)$: -2.1 ± 0.2 L/day volume Integrate R vs cosθ Middle $(-0.4 < \cos\theta < 0.4) : -23.0 \pm 0.2 \text{ L/day}$ · camera image · load cell balloon shape reconstruction with ²¹⁰Po events • ²²²Rn decay rate mixture of KL-LS and dummy-LS by gas-chromatograply Ca

Inspection of holes with a He leak detector

after 1.5 yrs of effort Including improvement of welding mini-balloon installation again May 10, 2018

50cm width for detector access

Characterization of mini-balloon, again

²¹⁴Bi-Po Delayed coincidence

Basic investigations before xenon

- ✓ mini-balloon is clean
- v no evidence of leakage
- ✓ 238U is low enough
- ? 232Th(~10⁻¹⁵g/g)

²¹²Bi-Po in ²³²Th series is a possible BG.

Pileup BG is as large as current ¹⁰C BG and tolerable.

But ¹⁰C rejection is improving, and we chose **purification!**

One more way to reduce ²¹²Bi-Po pileup h series KamLAND can tag sequential decay of ²²⁰Rn-²¹⁶Po in ²³²Th series. 224 Ra 224 3.66d 5789keV 220 Rn 220 55.6s 6405keV 216 Po 216 0.145s 6907keV 212 D: 212 Pp 212 Po 212 10.64h 573.7 60.55m 2254 0.299x10° 6207 8954keV 35.9% 208 TI 208 Pb 208

Both 208 Tl, 212 Bi- 212 Po can be suppressed with 2 days veto after the tag. Useful for $0\nu2\beta$ search and low threshold 8 B neutrino observation

5001

stable

3.053m

Xenon loading started in November 2018 after the purification

Picture taken on 29 January 2019

mini balloon with 745 kg of enriched xenon

2ν region Z vs ρ^2

Zen 400 phase 2

contaminated with ¹³⁴Cs, dust sank

 $2\nu 2\beta$ dominates in all volume

after ²¹⁴Bi-Po cut

MeV

2

No strange BG is seen in $2\nu 2\beta$ region even in all volume.

208Tl and probably ²¹⁴Bi are seen in higher energies.
²¹⁴Bi rejection efficiency on the mini-balloon is ~50%.

Radius cut reduces ²⁰⁸Tl and ²¹⁴Bi (potential BG) very well. FV can be 3~4 times larger and equivalent with all volume of Zen 400.

Finally,

"Advantages of using KamLAND" have been all demonstrated;

- Iow cost and quick start (running detector)
- BG can be identified (full active thick shielding)
- 2 In-situ purification possible (liquid media)
- ③ On/Off measurements possible (xenon is removable)
- 4 multi-purpose (ex. geo-neutrino)
- 5 easily? scalable (mini-balloon)

ran in 2 years

110mAg identified

110mAg removed

BG confirmed by degassing

leading geo- ν

mass doubled

And more future plans!

Higher energy resolution for reducing 2ν BG

KamLAND2-Zen

Expansion of entrance

Winston cone light collection ×1.8

high q.e. PMT light collection ×1.9 $17"\phi \rightarrow 20"\phi \quad \varepsilon = 22 \rightarrow 30 + \%$

New LAB LS light collection ×1.4 (better transparency)

expected σ (2.6MeV)= 4% \rightarrow ~2%

target sensitivity 20 meV

R&D for KamLAND2-Zen and future

winston cone

New LAB-LS

Odenser xenon

Xe partial pressure(MPa) principle confirmed

scintillator film

imaging

PolyEthylene Naphthalate (PEN)

 η = 10,500ph/MeV λ PEN=425nm U,Th < 3 ppt

requires Bis-MSB in LS

τ~27 nsec, much slower than Kam-LS 4 nsec

PSD possible

Possible BG from natural radioactivity

```
<sup>214</sup>Bi - <sup>214</sup>Po (missed)
            99.975% rejection (double pulse)
 Nylon6 (~50%) rejection - Obstacle to enlarge FV
           (99.95%) rejection (double pulse)
<sup>212</sup>Bi - <sup>212</sup>Po (pileup)
            95% rejection (double pulse)
            95% rejection (<sup>220</sup>Rn-<sup>216</sup>Po tagging)
            99.75% rejection in total ← Requires only 10-15g/g
 LS
           •(97.5%) rejection (no \alpha or double pulse)
 Nylon6
            99.95% rejection (double pulse, <sup>220</sup>Rn-<sup>216</sup>Po, PSD)
 PEN
```

Any of three α identification tells it's a surface BG.

PEN reduces surface BG very efficiently, thus enables thicker (easier to handle) film and/or larger FV.

Further ¹⁰C reduction, analysis & electronics

1. Triple fold coincidence

2. Energy loss along μ track

Two channel prototype (real is 16ch)

Wide range, low noise, fast FADC, ethernet data transfer (real adds digital BLR)

3. Wider timing distribution for spread vertices

~50% reduction possible

New electronics will improve ¹⁰C reduction from 64% to ~99%.

Zen 800 is going to introduce them.

Conceptual design Rough extrapolation of BG estimation & sensitivity

	KamLAND-Zen 400	KamLAND-Zen 800	KamLAND2-Zen 2.38-2.58 MeV	KamLAND2-Zen High P
2ν2β [/100kgXe/y]	7.4	7.4 	<0.15 E	<0.15
[/100kgXe/y]	1.3 — anal	→ 0.18 — <i>O</i>	O.09 ————————————————————————————————————	→ 0.05 atm
⁸ Β <i>ν</i> [/100kgXe/y]	0.33	0.33 	O.16 ————————————————————————————————————	→ 0.09 atm
FV (loading) [kgXe]	100 (380)	· · · · · · · · · · · · · · · · · · ·	→ 1000 (1000) EN	1000 (1000)
(Expected) reach	61-165 meV 1.07×10 ²⁶ yr	40 meV 5×10 ²⁶ yr	20 meV 2×10 ²⁷ yr	<20meV >2×10 ²⁷ yr

Schedule installation of new electronics planned during Zen 800 2019 Kamk AND-Zen 800 Purchase enriched Xenon(200kg) 2020 Installation of MoGURA2 **Environmental and** Clean room fabrication Clean air system installation peripheral preparation 2021 Purification system upgrade Light concentrator production Large balloon production 2022 **Purchase HQE-PMT** LS drain KamLAND upgrade 2023 **Expansion of entrance** PMT replacement/mirror attachment Large balloon installation 2024 Refurbishment of N2 system No observation **New LS production** LS filling 2025 **Development of calibration system** 2026 KamLAND2 start Mini-balloon installation Xenon installation KamLAND2-Zen start 2027

Geo-neutrino

observation

2028

Investigation of

Majorana nature

Summary

 KamLAND-Zen 400 has the current world best record on effective Majorana mass of neutrinos.

$$T_{1/2}^{0\nu} > 1.07 \times 10^{26} \,\mathrm{yr}$$
 [PRL117, 082503] $\langle m_{\beta\beta} \rangle < (61 - 165) \,\mathrm{meV}$

- It also validated "advantages of using KamLAND."
- KamLAND-Zen 800 successfully launched in January 2019 with a target sensitivity of 40 meV.
- KamLAND2-Zen aims at sensitivity below 20 meV, adopting HQE-PMT, Winston Cone, LAB-LS, new electronics, PEN-MIB, and maybe high pressure xenon loading.
- · R&D for KL2-Zen to launch around 2027 is going well.

Thank you!