THE XMASS EXPERIMENT

MAR. 8TH, 2019

Y. KISHIMOTO ON BEHALF OF XMASS COLLABORATION

KAMIOKA OBS., ICRR, THE UNIV. OF TOKYO

KAVLI IPMU, THE UNIV. OF TOKYO

CONTENTS

- XMASS project
- Physics results from XMASS
- Low background technique in XMASS
- Summary

THE XMASS PROJECT

• XMASS: a multi purpose experiment with liquid xenon

- Dark matter
- Solar neutrino (pp/7Be)
- Ον ββ

 Located 1,000 m underground (2,700 m.w.e.) at the Kamioka Observatory in Japan

Features

□ Scalability

□ Low energy threshold (~0.5keVee)

 \Box Sensitive to e/ γ events as well as nuclear recoil

XMASS-I DETECTOR

Liquid xenon detector
 \$32 kg of liquid xenon (-100 °C)
 642 2-inch PMTs

 (Photocathode coverage >62%)

 Each PMT signal is recorded by

 10-bit 1GS/s waveform digitizers

Water Cherenkov detector
 10m diameter, 11m high
 72 20-inch PMTs
 Active shield for cosmic-ray muons
 Passive shield for n/γ

HISTORY OF XMASS-I DATA-TAKING

ACHIEVEMENTS IN XMASS-I

- Dark matter searches
- Neutrino studies
- Other exotic physics (Axion, ...)
 - Solar axion, KK axion,
- Neutrino observatory
- Low background technology

DARK MATTER SEARCHES IN XMASS-I -- ANNUAL MODULATION

- DAMA/LIBRA's claim (<u>https://doi.org/10.15407/jnpae2018.04.307</u>)
 - The data of the new DAMA/LIBRA-phase2 confirm a peculiar annual modulation of the *single-hit* scintillation events in the (1 - 6) keV energy region <u>satisfying all the many requirements of the DM annual modulation</u> <u>signature</u>; ...

Annual modulation search with the XMASS (10.1103/PhysRevD.97.102006)

Target volume = 800 kg, Livetime = 800 days (1.82 ton*year, 2.2 cycle)

Assuming WIMP DM, we excludes DAMA/LBRA allowed region at 3σ level by annual modulation.

In model independent analysis, we found no periodicity in data.

DARK MATTER SEARCHES IN XMASS-I -- ANALYSIS WITH EVENT RECONSTRUCTION

• Event reconstruction in XMASS:

 Event energy and position can be reconstructed with numbers of P.E. in each

PMTs.

 $L(\mathbf{x}) = \prod_{i=1}^{642} p_i(n_i)$

p_i (n) : probability that the *i*-th PMT detects *n* PE

 Strong self-shielding could lead small numbers of BG at the center region, r<20 cm.

10 15

y [cm]

⁵⁷Co 122keV

RESULTS: ENERGY SPECTRUM IN THE FIDUCIAL VOLUME

- 706 live days taken in Nov. 2013 Mar. 2016
- Fiducial mass 97kg (R<20cm)

Main background in the WIMP search region

 ²¹⁰Pb in the copper
 γ-rays from PMTs
 Neutrons, alpha-rays are negligible

10.1016/j.physletb.2018.10.070

13

RESULTS: ENERGY SPECTRUM IN THE FIDUCIAL VOLUME

- 706 live days taken in Nov. 2013 Mar. 2016
- Fiducial mass 97kg (R<20cm)

The energy spectrum at 2-15 keV_{ee} is fitted with signal + background.
 Systematic uncertainties are taken into account as nuisance parameters in the fit.
 Detector surface conditions (gap, roughness) are dominant.

97kg x 706 days exposure 90% CL upper limit on SI WIMP-nucleon cross section σ_{sl} <2.2x10⁻⁴⁴ cm² @60 GeV/c²

First stringent constraint by a single-phase LXe detector.

DARK MATTER SEARCHES IN XMASS-I -- HIDDEN PHOTONS & AXION-LIKE PARTICLES DARK MATTER

Hidden photon (HP): gauge boson of hidden U(1)
 Axion-like particles (ALPs): pseudo-Nambu-Goldstone boson

Both are the cold dark matter candidates.

 Both bosons can be absorbed in the detector medium with emission of an electron. → analogue to photoelectric effect

THE RESULTS

- 800 live days of data (Nov. 2013 Jul. 2016)
- Fiducial volume was extended to R<30cm (327 kg of LXe)
- Fitting energy range 30-180 keV

- A peak search by fitting the energy spectrum with the signal + background model.
- Scanning mass every 2.5 keV/c² in 40-120 keV/c²

https://doi.org/10.1016/j.physletb.2018.10.050

17

No significant signal was observed.

- Axion-like particles DM
 g_{Ae}< 4x10⁻¹³ (90% CL) for 40-120 keV/c²
 Cover higher mass region than LUX and PandaX-II
 - The best constraint in 40-120 keV/c² for both cases.
 - For HP, no possibility for thermal production mechanism for the first time in the world in the previous work in 2014. (DOI: 10.1103/PhysRevLett.113.121301)

Hidden photon DM

 α'/α < 6x10⁻²⁶ (90% CL) for 40-120 keV/c²
 Cover a region where indirect searches are weak

STUDIES ON NEUTRINO PROPERTIES WITH XMASS -- DOUBLE ELECTRON CAPTURE

 Natural xenon contains ¹²⁴Xe (N.A.=0.095%) and ¹²⁶Xe (N.A.=0.089%) which can undergo double electron capture.

¹²⁴Xe (g.s., 0⁺) + 2 e^{-} \rightarrow ¹²⁴Te (g.s., 0⁺) + (2 v_e) + 2864keV

0v mode → Evidence of lepton number violation
 2v mode → New input for nuclear matrix element calculation

None of the modes are overserved yet.

- ¹²⁴Xe 2v double electron capture from K-shell (2v2K)
 - Total deposit energy of 63.6 keV by X-rays/Auger electrons
 - Expected half-life is **10²⁰-10²⁴ years**.
 - It may be possible to find out the 2v2K.
 - Main BG: 125
 - ${}^{125}I + e^{-} \rightarrow {}^{125}Te + v + 185.77 \text{ keV}, T_{1/2} = 59.4 \text{ day}$
 - It is created by thermal neutron capture of ¹²⁴Xe outside the water shield.
 - It gives a peak at 67.5 keV_{ee}.

Result (DOI: 10.1093/ptep/pty053)

We divided the data into 4 by operation modes. In each operation modes, thermal neutron flux is measured by independent measurement.

No significant signal was observed.

25

 The most stringent limit to date

 T_{1/2}^{2v2K}(124Xe)>2.1x10²² yrs
 T_{1/2}^{2v2K}(126Xe)>1.9x10²² yrs

The result ruled out some theoretical predictions.

Note on theoretical predictions:

- g_A= 1.26(lower) 1(upper)
- Probability of 2K-capture= 0.767

NEUTRINO OBSERVATORY, XMASS

 XMASS has the sensitivity to detect neutrino burst from a supernova around 10 kpc via neutrino coherent scattering

- Especially for nearby-supernova case,
 - KL can measure pre-SN v to distribute SN alert.
 - XMASS can measure 10⁴ events
- We established SN monitoring network in Kamioka.
 - Monitor SN alert provided by KL in 24 hours.

• The result:

- We are not lucky enough to observe any SN v in this 30 years.
- But it is shown by XMASS that a large scale DM detector is potentially utilized as SN v observatory.

- Other astrophysical object:
 - We searched for event bursts related to GW170817.

Around GW170817 (Aug. 17 2017 12:41:04UTC) in [-400, +10,000] sec □ Simple data reduction: □ Full volume No OD trigger Removing PMT after pulses Remove Cherenkov events Four evet regions □ <~30 keV 0.22 event/s **30-300 keV** 0.56 event/s **300-3000 keV** 0.99 event/s □ >~3000 keV 0.02 event/sAnalysis Window □ Vary from 20 ms to 10 s to find bursts.

GW170817

BG rate estimated from pre-window of GW170817

To be published soon!

No bursts were found.

LOW BG TECHNOLOGY

• Introduction:

- The main backgrounds of the XMASS detector are
 - ²¹⁰Pb from cupper and
 - RI's from the PMT.
- We have lots of efforts.
- Three topics in this talk:
 - New 3" round-shape PMTs
 - Particle ID by Xe scintillation property
 - Ultra low level α counter

LOW BG TECHNOLOGY -- PARTICLE ID BY XE SCINTILLATION LIGHT

- Nuclear scattering from electron scattering
 - With neutron source, scintillation time profile are measured.

• Log likelihood ratio

 Acceptance of electron recoil events assuming 50% acceptance of 100 GeV WIMPs.

It is not easy to distinguish NR from ER at lower energy region.

- Electron event from gamma evet
 - Gamma ray interacts with electrons and looses the energy.
 - This reads the time profile difference between gamma and electron.

$$\beta CL = P \times \sum_{i=0}^{n-1} \frac{(-\ln P)^i}{i!} \qquad P = \prod_{i=1}^n CL_i$$

LOW BG TECHNOLOGY -- ULTRA-LOW ALPHA-RAY COUNTER

• XIA Ultra-Lo-1800

- Measure ionization signal of Ar by induction.
 - Wall event rejection by pulse shape
- Installed in Kamioka mine in 2015.
 - It was the first time installation into the underground experimental lab.

	Specification			
efficiency	>90% of 2π			
ΔE	<9% FWHM at 4.6MeV			
E range	1-10MeV			
Max. sample size	707cm ² (φ30cm disk)、1800cm ² (42cm*42cm)			
Max. sample weight	9kg			
Max. sample thickness	6.3mm			
Sensitivity	10 ⁻⁴ α/cm ² /hr ~ 0.56 mBq of ²¹⁰ Po on 1 m ² surface			

• We found that the alpha counter is also sensitive for α -rays from bulk.

According to MC, α -ray comes from d=2~6 μ m can be measured at *E*=2.5~4.8 MeV under some conditions:

- An α counter must be low-BG itself.
- Sample surface must be low-BG.
- Sample roughness << 10 μm
- Ris other than ²¹⁰Po can be ignorable.

https://doi.org/10.1016/j.nima.2017.12.015

• Measure ²¹⁰Po count rate several time

• Calculate ²¹⁰Pb and ²¹⁰Po in the material.

	²¹⁰ Pb	²¹⁰ PO
	(mBq/kg)	(mBq/kg)
OFC#1 (MMC)	40±8	47±21
OFC#2 (MMC)	20±6	33±14
OFC#3 (MMC)	27±7	160 ± 30
OFC#4 (MMC)	23±8	220±40
OFC#5	17±6	44±18
(SH copper products)		· · · · · · · · · · · · · · · · · · ·
OFC#6	27±8	24±17
(SH copper products)		김 신생 학생들

²¹⁰Pb in cupper is measured with high sensitivity.

This technique is applicable to other conductive material. (Non-conductor?→ Future R&D item)

LOW BG TECHNOLOGY -- 3" ROUND SHAPE PMT FOR FUTURE DETECTOR

- We have developed a new low PMT, R13111, for a future detector with Hamamatsu.
 - Low RIs
 - Round shape
 - Larger photo-cathode

- Why round shape?
 - The BG from detector wall can be removed

• Low BG

- We screened materials with Ge-detectors, GD-MS, and ICP-MS.
- A low BG PMT, R113111, is developed successfully .

(Unit: mBq)	²²⁶ Ra	²³⁸ U	²¹⁰ Pb	²²⁸ Ra (²³² Th)	⁴⁰ K	⁶⁰ Co
Produced in 2015	0.38 (0.07)	<1.6	<32	0.29 (0.06)	<1.4	0.22 (0.05)
Produced in 2016	0.44 (0.06)	<1.4	<24	0.20 (0.06)	2.0 (0.5)	0.13 (0.04)
XMASS-I PMT (R10789)	1.2 (0.3)	-	-	<0.78	9.1 (2.2)	2.8 (0.2)

~1/10

Paper will be published soon.

SUMMARY

- XMASS project
- Physics results from XMASS
- Low background technique in XMASS

Thank you for your supports to XMASS-I.