

The Deep Underground Neutrino Experiment

with an emphasis on astrophysics

Fermilab

Outline

- I. Status of DUNE
 - Design
 - Collaboration
 - Schedule, including ProtoDUNE
- II. Physics of DUNE
 - Beam and atmospheric neutrinos
 - Supernova neutrinos
 - Nucleon decay
 - Other

Overview

Anatomy of DUNE

The growing collaboration

As of January 2019

1202 collaborators from 183 institutions in 31 countries

648 faculty/scientist, 201 PDs, 119 engineers, 234 PhD students

Single Phase-----Dual Phase

- The DUNE Collaboration is pursuing and prototyping two LAr TPC technologies, SP & DP
- The collaboration is planning for the 1st 10 kT module to be SP & 2nd DP (2+1+1 model with 3rd module SP and 4th 'module of opportunity')
- Sequencing (SP-DP-SP vs. SP-SP-DP) will depend on ProtoDUNE results & resources

PIP II

Proton Improvement Plan Phase 2 using superconducting cryomodules \Rightarrow Groundbreaking Ceremony 15 March 2019

DUNE Schedule

- Physics TDR will be available soon
- O Detector 1 ready to start installation August 2024
- O Detector 1 ready for cool down August 2025
- O Detector 1 ready for physics late summer 2026
- O Detector 2 ready to start installation August 2025
- O Detector 2 ready for cool down August 2026
- O Detector 2 ready for physics late summer 2027

ProtoDUNE

Purity

Drops in purity due to stop of the liquid argon recirculation (sometime planned and sometime not)

CERN Beam ProtoDUNE running

Events / future CERN plan

✓ 2018 ProtoDUNE-SP run

Beam Data Accumulation

Particle content is based on the expected rates from the Geant simulation of the beamline

Momentum	Total Triggers	Total Triggers	Expected Pi	Expected Proton Trig	Expected	Expected Kaon Trig
(GeV/c)	Recorded (K)	Expected (K)	trig. (K)	(K)	(K)	(K)
0.3	269	242	0	0	242	0
0.5	340	299	1.5	1.5	296	0
1	1089	1064	382	420	262	0
2	728	639	333	128	173	5
3	568	519	284	107	113	15
6	702	689	394	70	197	28
7	477	472	299	51	98	24
All momenta	4173	3924	1693.5	777.5	1381	72

✓ Use cosmics through Oct 2020 for SP & DP
✓ Upgrade SP Oct 2020- Sep 2021
✓ more beam Apr-May 2022

Supernova neutrinos

$\boldsymbol{\nu}$ Signals in Liquid Ar

A LAr detector is primarily sensitive to *neutrinos*, as opposed to water/scintillator sensitivity to antineutrinos

• Elastic scattering (ES) on electrons

 $\nu + e^{-} \rightarrow \nu + e^{-}$

• Charged-current (CC) interactions on Ar v_e + ${}^{40}Ar \rightarrow {}^{40}K^* + e^-$ Ev_e > 1.5 MeV $\overline{v}_e + {}^{40}Ar \rightarrow {}^{40}Cl^* + e^+$ E \overline{v}_e > 7.48 MeV

v distributions (t, E_v) **before** oscillations

Garching Model

Rates and distance

Rate versus distance

Typical distance from us: ~10-15 kpc

Model of Argon Reaction Low Energy Yields

http://www.marleygen.org/

SIMULATIONS MARLEY & SNOGLOBES

SNOwGLoBES

A fast event rate computation tool for long-baseline experiments

http://webhome.phy.duke.edu/~schol/snowglobes/

Energy smearing without/with drift correction

V

Time details

Maury Goodman

Michels from stopping $\boldsymbol{\mu}$ appropriate for calibration

Supernova spectrum in DUNE

Michel Electron Spectrum

Stopping μ in ProtoDUNE

Trigger challenge

- SN triggering is a challenge for a slow LArTPC
 - Sampling at 1.15 TB/s for 10 kT single phase
 - * 100 s of uninterrupted data if SN happens
 - ✤ Don't want to miss any galactic SN

• Very rough rates:

- * 1 SN@LMC makes 50 events in 40 kT
- ✤ 13 events in 10 kT
- ✤ Spread over ~10 s
- $# 13 \text{ events}/10 \text{ s} \cong 1 \text{ Bq}$
- ℜ For Background 4 × 10⁻⁸ Bq
 - 1 fake per month

Background contributions

Signal	Туре	Rate [Bq]	Reduction needed	Energy [MeV]
Argon 39	Beta	3x107	7x1014	< 1
Argon 42	Multiple	2x10 ³	6x1010	3
Rock/Cement Uranium 238	Neutrons	1x10 ²	3x10 ⁹	0-10
Polonium on Photodetector	Alpha	70	2x109	5
Radon 222 decay chain	Alpha	1x10 ⁶	3x10 ¹³	5
Other		3x106	8x1013	≈ 1
SN Signal	Electron	1Hz	1	5-25

ℜ Need a fast & efficient

trigger algorithm

Parameter	single-phase	dual-phase
TPC unit	APA	CRO crate
Unit multiplicity	150	240
Channels per unit	2560 (800 collection)	640 (all collection)
ADC sampling	2 MHz	2.5 MHz
ADC resolution	12 bit	12 bit

Interpretation challenges

We can predict an E_v spectrum from a model, but how well can we point to a model based on a measured spectrum?

We needtheorists to be perfect!

Maury Goodman

Tests using DUNE SN ν of Lorentz/CPT violation

DUNE supernova sensitivities to Lorentz and CPT violation

Slide from Kostolecky

9 March 2019

SN v's in NOvA

Reconstructed e⁺ from 10kpc in 1 s:
299 for 27 M_☉
87 for 9.6 M_☉

Solar neutrinos

The key advantage of DUNE: *event-by-event energy reconstruction*, rather than v-e recoil spectrum

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

Solar v's in DUNE

DUNE as the Next-Generation Solar Neutrino Experiment Francesco Capozzi,^{1,2,3} Shirley Weishi Li,^{1,2,4} Guanying Zhu,^{1,2} and John F. Beacom^{1,2,5} ¹Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, OH 43210 ²Department of Physics, Ohio State University, Columbus, OH 43210 ³Max-Planck-Inditu für Physik (Werner-Heisenber-Institut), 88055 München, Germany

⁴SLAC National Accelerator Laboratory, Menlo Park, CA, 94025 ⁵Department of Astronomy, Ohio State University, Columbus, OH 43210 (Dated: 24 August, 2018)

theoretical studies: A. Ioannisian et al., Phys.Rev. D96 (2017) no.3, 036005

newer paper-- arXiv:1808.08232

Slide from K. Scholberg

BUT: makes very optimistic assumptions:

(7% energy resolution, 25% angular resolution, modest bg, no systematics, ...these may not be achieved*)

- Triggering studies still needed (different issues than SNB)
- Overall realistic sensitivity for solar vs still under study

From K. Scholberg

*~20% energy resolution more likely, e.g., μ BooNE 1704.02927

Maury Goodman

Nucleon decay

NDK sensitivity 400 kT-y

 $p \rightarrow \nu K^+$

Scomparable to Super-K

 $n \rightarrow e^{-} K^{+}$

Improve by ~100

91 modes in 2014 RPP (Super-K had reported best limit for only 14, but probably could do better in most modes. DUNE could compete in ~ 20.)

Beam neutrinos

CP, Order, θ_{23} sensitivity

CP Violation

Octant

0 0 200 400 600 800 1000 1200 1400 Exposure (kt-MW-years)

Atmospheric neutrinos

3v oscillations with Atmospheric v's

Lorentz & CPT violation using Standard Model Extension (SME)

DUNE atmospheric sensitivities to Lorentz and CPT Violation

Sensitivity from Kostolecky, no simulation

Other

Additional topics

- ℜ Relic Supernova neutrinos
- ✤ Light Dark Matter
- ✤ Neutrinos from DM annihilation in the sun
- ℜ Solar neutrinos
- ✤ CPT and Lorentz Violation

✤Coincidences with GRB, gravitational waves

Thank you!

Backup

SN direction

• Some promising work is taking place on reconstructing the direction from ve elastics.

ProtoDUNE event

SN signal (red) on background (blue) in NOvA FarDet

SN signal versus distance for NOvA

The resulting detection ε for 3 signal shapes vs. t.

