Neutrino Astrophysics at Hyper-Kamiokande

Takatomi Yano

ICRR

1

Revealing the history of the universe with underground particle and nuclear research 2019

Tohoku Univ., 9th Mar. 2019

Hyper-Kamiokande Project

	<section-header></section-header>	<section-header><text></text></section-header>
Design	Hyper-Kamiokande	Super-Kamiokande
No. of PMTs (ID/OD)	40,000 / 6,700	11,129 / 1,885
Photocathode coverage	40% (x2 efficient p.e. detection)	40%

Total / Fiducial V.

0.26 Mt / 0.19Mt (per tank)

50 kt / 22.5 kt

Hyper-K Site

- Hyper-K will be located in deep underground, Kamioka mine.
 - Super-K : 1 km vertical depth
 - Hyper-K : 640 m
- Simulation study for muon spallation backgrounds is done.
 Muon flux : Hyper-K = ~5 × Super-K larger muon spallation background
 Spallation product : Hyper-K = ~4 × SK new likelihood cut

~2.7 × SK

HK position in Tochibora

Neutrino, Messenger from Nature

Source of Neutrinos

Physics of Neutrinos

- Neutrino Mixing
 - Mixing angles, Mass differences
- Difference between $\nu \& \overline{\nu}$
 - CPV, CPTV (Leptogenesis)
- Tiny neutrino masses
 - Mass hierarchy
- Astrophysics
 - Prove of supernova, Sun, Earth and our universe.
- ν 's role in nature
 - ν heating in supernova

Astrophysical Neutrinos

Hyper-K (187 kton H₂O)

⁸B solar neutrino 130 events / day
Supernova neutrino ~50,000 events / burst
Supernova relic neutrino ~18 events / year
highest statistics / directional information

DUNE (40 kton Ar)

Supernova neutrino ~3,000 events / burst sensitive to only electron neutrinos no directional information

JUNO (17 kton LS)

Supernova neutrino ~5,000 events / burst Supernova relic neutrino ~3 events / year **no directional information**

IceCube (2,400 kton H₂O)

Supernova neutrino ~300,000 events / burst no energy / directional information

Solar Neutrino

Real time measurement allowing solar neutrino spectroscopy

Cherenkov ring image in Super-K

 $\nu + e^- \rightarrow \nu + e^-$

Prospect in future solar neutrino

MSW matter effect of the neutrino oscillations in the Sun Neutrino regeneration in the Earth (Day-Night effect) Temporal flux variation / relation with solar activities Branching ratio of nuclear fusion reactions

MSW Matter Effect

Required by observed energy dependence of survival probability (Pee)

Spectrum Up-turn

Intermediate energy region between vacuum and MSW oscillation (up-turn) can be measured more precisely in Hyper-K

Observation of MSW oscillation with single neutrino source (⁸B) Test exotic scenario (non-standard interaction, sterile neutrino)

Hep Solar Neutrino

Three orders of magnitudes smaller than ⁸B solar neutrino flux

First measurement of hep solar neutrinos at $2\sim3 \sigma$ Test cross-section of He + p fusion, convection (non-standard SSM)

Supernova Neutrino

SN1987A at 50 kpc : first detection of supernova burst neutrino

Supernova Neutrino in Hyper-K

Main detection channels

Time Modulation w/ Neutrino Oscillation

Normal Hierarchy (NH)

Neutralization Burst

Unique feature in v-e scattering from neutralization burst

supernova at 10 kpc (Livermore simulation)

neutralization burst ve emission for ~10 msec shock wave propagation outward dissociation of nuclei in free nucleon which triggers $e^{-}p \rightarrow v_{e}n$ shock wave pass through neutrinosphere **Hyper-K will observe** the neutralization burst

Explosion Mechanism

First 0.3 sec after the onset of supernova burst

inverse beta decay for supernova at 10 kpc

Time modulation of event rate

Time modulation of mean energy

onset time ~ 1 msec accuracy

Hyper-K will test the explosion mechanism, and investigate the core infall in conjunction with gravitational wave data

Shock Revival by Neutrino Heating

Neutrino heating is a key phenomenon in the supernova explosion mechanism

- Shock wave from core bounce stalls in 100-200 km
- Neutrino heating revives the shock wave after O(10)-O(100) ms $\underline{\mathbb{I}}$

Some 2D and 3D simulations indicate SASI (Standing Accretion Shock Instability) is important process for the supernova explosion

SASI or neutrino-driven convection is controversial

SASI activity will cause the modulation in the accretion flow to the neutron star and the neutrino emission

Hyper-K will test the supernova neutrino flux modulation

- Amplitude of modulation depends on observer direction
- For the case of 3% amplitude of modulation, Hyper-K covers 90% of galactic supernova

F. Hanke et al., Astrophy. J 770, 66 (2013)

Multi-Messenger Signals

complementary observation with 3 signals!

For the SN explosion, electromagnetic signal will delay in minutes to hours.

To obtain the electromagnetic signal follow-up, neutrino experiments need to predict the supernova direction as soon as possible

Fig. by Y. Suwa

global collaboration by SNEWS network

Pointing in 1.5 deg accuracy will allow the follow-up with large telescopes (> 1m)

Supernova Relic Neutrino

Neutrinos from supernova explosions in the early universe to the present day integrated flux ~10 cm⁻²sec⁻¹ enough flux detectable in Hyper-K Hyper-K will measure the average flux and energy in supernovae

Signal Detection

expected energy spectrum

Neutron tagging effectively reduces the "invisible muon" background from atmospheric neutrinos $\rightarrow \times 1/5$

~70 events / 4σ detection significance in 10 years

Prospect

Relation with competing experiments to search for supernova relic neutrinos in the world

future projects : SK-Gd, JUNO, Hyper-K

number of SRN events in future projects

Conditions

SK-Gd (22.5 kton H₂O)

Low energy threshold : 10 MeV neutron tagging by Gd-loading Start data-taking in 2018

Aim for the first discovery

JUNO (17 kton LS)

Low energy threshold : 11 MeV Start data-taking in 2020

Hyper-K (187 kton H₂O)

Energy threshold : 16 MeV Start data-taking in 2027

Aim for the precise flux and energy spectrum measurement

Hyper-K will be a leading experiment for supernova relic neutrinos

Star Formation History

harder in black hole formation

core-collapse rate predicted from star formation rate
observed supernova rate visible supernovae

factor ~2 smaller than the expectation from star formation rate

→ invisible dim supernova or black hole formation?

supernova explosions in massive stars (~30 solar mass) result in **black hole formation**, **high E neutrino production**

expected energy spectrum in Hyper-K (10 year)

History of black hole formation can be investigated

Hyper-K with Gd

Option to add Gd compound in Hyper-K for neutron tagging

Energy threshold can be lowered from 16 MeV to 10 MeV Explore the history of supernova burst back to red shift (z) ~ 1. 7.5×10^9 years

Summary

- Hyper-K will be a leading experiment in astroparticle physics research with the highest statistics and directional information
 - Our observation will start at 2027.
 - The detector design is being finalized.
- Astrophysical neutrino measurements is one of the features of Hyper-Kamiokande.
 - Solar neutrino
 - Hep neutrino, seasonal variation, up-turn etc \cdots
 - Supernova neutrino
 - Energy and time spectrum measurement, SN alarming etc..
 - Supernova Relic Neutrino
 - Supernova and SFR models, extraordinary SN

Backup