Neutrino Astrophysics at Hyper-Kamiokande

Takatomi Yano

ICRR

Revealing the history of the universe with underground particle and nuclear research 2019

Tohoku Univ., 9th Mar. 2019
Hyper-Kamiokande Project

- Total Volume: 0.26 Mt
- Improved photo-sensors
- Construction will start at 2020. The measurement will be ready at 2027.

Design

<table>
<thead>
<tr>
<th></th>
<th>Hyper-Kamiokande</th>
<th>Super-Kamiokande</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of PMTs (ID/OD)</td>
<td>40,000 / 6,700</td>
<td>11,129 / 1,885</td>
</tr>
<tr>
<td>Photocathode coverage</td>
<td>40% (×2 efficient p.e. detection)</td>
<td>40%</td>
</tr>
<tr>
<td>Total / Fiducial V.</td>
<td>0.26 Mt / 0.19Mt (per tank)</td>
<td>50 kt / 22.5 kt</td>
</tr>
</tbody>
</table>
Hyper-K Site

- Hyper-K will be located in deep underground, Kamioka mine.
 - Super-K : 1 km vertical depth
 - Hyper-K : 640 m

- Simulation study for muon spallation backgrounds is done.
 Muon flux : Hyper-K = ~5 × Super-K
 Spallation product : Hyper-K = ~4 × SK
 new likelihood cut
 ~2.7 × SK
Neutrino, Messenger from Nature

Source of Neutrinos
- Solar
- Supernova
- Atmospheric
- Accelerator (J-PARC) (Geo & Reactor)

Physics of Neutrinos
- Neutrino Mixing
 - Mixing angles, Mass differences
- Difference between ν & $\bar{\nu}$
 - CPV, CPTV (Leptogenesis)
- Tiny neutrino masses
 - Mass hierarchy
- Astrophysics
 - Prove of supernova, Sun, Earth and our universe.
- ν’s role in nature
 - ν heating in supernova
Astrophysical Neutrinos

Hyper-K (187 kton H$_2$O)
- 8B solar neutrino: 130 events / day
- Supernova neutrino: \sim50,000 events / burst
- Supernova relic neutrino: \sim18 events / year
- highest statistics / directional information

DUNE (40 kton Ar)
- Supernova neutrino: \sim3,000 events / burst
 sensitive to only electron neutrinos
- no directional information

JUNO (17 kton LS)
- Supernova neutrino: \sim5,000 events / burst
- Supernova relic neutrino: \sim3 events / year
- no directional information

IceCube (2,400 kton H$_2$O)
- Supernova neutrino: \sim300,000 events / burst
- no energy / directional information
Solar Neutrino

Real time measurement allowing solar neutrino spectroscopy

Cherenkov ring image in Super-K

Prospect in future solar neutrino

MSW matter effect of the neutrino oscillations in the Sun
Neutrino regeneration in the Earth (Day-Night effect)
Temporal flux variation / relation with solar activities
Branching ratio of nuclear fusion reactions

Hyper-K can address the issues
MSW Matter Effect

Required by observed energy dependence of survival probability (P_{ee})

Energy dependence of survival probability

$$P_{ee} = \sin^2 \theta_{12} \ (\beta > 1, \ MSW)$$

$$P_{ee} = 1 - \frac{1}{2} \sin^2 2\theta_{12} \ (\beta < \cos 2\theta_{12}, \ vacuum)$$

$$\beta = \frac{2\sqrt{2}G_F n_e E_\nu}{\Delta m^2}$$
Spectrum Up-turn

Intermediate energy region between vacuum and MSW oscillation (up-turn) can be measured more precisely in Hyper-K.

Survival probability of electron solar neutrinos

Sensitivity of energy spectrum up-turn

3.5 MeV threshold

4.5 MeV threshold

>3σ sensitivity

Observation of MSW oscillation with single neutrino source (8B)

Test exotic scenario (non-standard interaction, sterile neutrino)
Day-Night Effect

zenith angle dependence of flux in Super-K

Super-K best
Solar + KamLAND

A. Renshaw et al.,
Phys. Rev. Lett. 112,
091805 (2014)

oscillation parameters : Solar and KamLAND

non-zero significance : 2.7σ

Goal of systematic error : 0.3%

>4σ for non-zero asymmetry & CPT invariance (P_ν = P_\bar{ν}) test
Hep Solar Neutrino

Three orders of magnitudes smaller than 8B solar neutrino flux

small branch
not detected yet

convection may enhance hep ν production at the high temperature core

$$^3\text{He} p \rightarrow ^4\text{He} e^+ \nu_e$$

First measurement of hep solar neutrinos at 2~3 σ

Test cross-section of He + p fusion, convection (non-standard SSM)
Confirmed that neutrinos bring most of the burst energy only in 10 sec.
Supernova Neutrino in Hyper-K

Main detection channels

Inverse beta decay
\[\bar{\nu}_e + p \rightarrow e^+ + n \quad E > 1.8 \text{ MeV} \]
\[\nu + e^- \rightarrow \nu + e^- \]
\[\nu_e + ^{16}\text{O} \rightarrow e^- + ^{16}\text{F}(*) \quad E > 15 \text{ MeV} \]
\[\bar{\nu}_e + ^{16}\text{O} \rightarrow e^+ + ^{16}\text{N}(*) \quad E > 11 \text{ MeV} \]

Total energy spectrum

galactic supernova at 10 kpc
54,000-90,000 events in total
high statistics
Time Modulation w/ Neutrino Oscillation

Normal Hierarchy (NH)
\[
\frac{dN_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} = |U_{e1}|^2 \frac{dN_{\bar{\nu}_1}}{dE_{\bar{\nu}_1}} + |U_{e2}|^2 \frac{dN_{\bar{\nu}_2}}{dE_{\bar{\nu}_2}} + |U_{e3}|^2 \frac{dN_{\bar{\nu}_3}}{dE_{\bar{\nu}_3}}
\]

\[
= |U_{e1}|^2 \frac{dN_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} + (1 - |U_{e1}|^2) \frac{dN_{\nu_x}}{dE_{\nu_x}},
\]

Inverted Hierarchy (IH)
\[
\frac{dN_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} = |U_{e3}|^2 \frac{dN_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} + (1 - |U_{e3}|^2) \frac{dN_{\nu_x}}{dE_{\nu_x}} \approx \frac{dN_{\nu_x}}{dE_{\nu_x}}
\]

Expected time profile (Livermore simulation) of a supernova at 10 kpc
Neutralization Burst

Unique feature in ν-e scattering from neutralization burst supernova at 10 kpc (Livermore simulation)

ν_e emission for ~10 msec

shock wave propagation outward

dissociation of nuclei in free nucleon which triggers $e^-p \rightarrow \nu_e n$

shock wave pass through neutrinosphere

Hyper-K will observe the neutralization burst
Explosion Mechanism

First 0.3 sec after the onset of supernova burst

inverse beta decay for supernova at 10 kpc

onset time ~ 1 msec accuracy

Hyper-K will test the explosion mechanism, and investigate the core infall in conjunction with gravitational wave data.
Shock Revival by Neutrino Heating

Neutrino heating is a key phenomenon in the supernova explosion mechanism
- Shock wave from core bounce stalls in 100-200 km
- Neutrino heating revives the shock wave after $O(10)$-$O(100)$ ms

Some 2D and 3D simulations indicate SASI (Standing Accretion Shock Instability) is important process for the supernova explosion
SASI or neutrino-driven convection is controversial

SASI activity will cause the modulation in the accretion flow to the neutron star and the neutrino emission

Hyper-K will test the supernova neutrino flux modulation
- Amplitude of modulation depends on observer direction
- For the case of 3% amplitude of modulation, Hyper-K covers 90% of galactic supernova
Multi-Messenger Signals

complementary observation with 3 signals!

For the SN explosion, electromagnetic signal will delay in minutes to hours.

To obtain the electromagnetic signal follow-up, neutrino experiments need to predict the supernova direction as soon as possible.

global collaboration by SNEWS network

For the SN explosion, electromagnetic signal will delay in minutes to hours.

To obtain the electromagnetic signal follow-up, neutrino experiments need to predict the supernova direction as soon as possible.

global collaboration by SNEWS network

Only large water Cherenkov detector can measure the supernova direction

supernova @ 10 kpc

SK \(\Delta \theta_{SN} \sim 6^\circ \)

SK-Gd \(\Delta \theta_{SN} \sim 3^\circ \)

Hyper-K \(\Delta \theta_{SN} \sim 2^\circ \)

Pointing in 1.5 deg accuracy will allow the follow-up with large telescopes (> 1m)

\(\nu_e \rightarrow \nu_e \)

\(\bar{\nu}_e \rightarrow \bar{\nu}_e \) (dominant)
Supernova Relic Neutrino

star formation rate
(= core-collapse rate)

Neutrinos from supernova explosions in the early universe to the present day
integrated flux \(\sim 10 \text{ cm}^{-2}\text{ sec}^{-1} \) enough flux detectable in Hyper-K

Hyper-K will measure the average flux and energy in supernovae

\[
\frac{dF_{\nu}}{dE_{\nu}} = \frac{c}{H_0} \int_0^{z_{\text{max}}} R_{\text{SN}}(z) \frac{dN_{\nu}(E'_{\nu})}{dE'_{\nu}} \frac{dz}{\sqrt{\Omega_m(1+z)^3 + \Omega_\Lambda}},
\]

Neutron tagging effectively reduces the “invisible muon” background from atmospheric neutrinos → ×1/5

~70 events / 4σ detection significance in 10 years
Prospect

Relation with competing experiments to search for supernova relic neutrinos in the world

future projects: SK-Gd, JUNO, Hyper-K

number of SRN events in future projects

- SK-Gd (22.5 kton H$_2$O)
 - Low energy threshold: 10 MeV
 - Neutron tagging by Gd-loading
 - Start data-taking in 2018
 - Aim for the first discovery

- JUNO (17 kton LS)
 - Low energy threshold: 11 MeV
 - Start data-taking in 2020

- Hyper-K (187 kton H$_2$O)
 - Energy threshold: 16 MeV
 - Start data-taking in 2027
 - Aim for the precise flux and energy spectrum measurement

Hyper-K will be a leading experiment for supernova relic neutrinos
Star Formation History

- **core-collapse rate** predicted from star formation rate
- **observed supernova rate** visible supernovae

factor \(\sim 2 \) smaller than the expectation from star formation rate

→ invisible dim supernova or black hole formation?

Supernova explosions in massive stars (\(\sim 30 \) solar mass) result in **black hole formation, high E neutrino production**

Expected energy spectrum in Hyper-K (10 year)

- **neutrino flux**
 - solid line: NS only
 - dashed line: NS + BH
 - NS : BH = 70% : 30%
 - \(T = 6 \text{ MeV} \)
 - \(T = 4 \text{ MeV} \)

History of black hole formation can be investigated
Hyper-K with Gd

Option to add Gd compound in Hyper-K for neutron tagging

Energy threshold can be lowered from 16 MeV to 10 MeV

Explore the history of supernova burst back to red shift \(z \) \(\sim 1 \).

7.5x10^9 years
Summary

• Hyper-K will be a leading experiment in astroparticle physics research with the highest statistics and directional information
 – Our observation will start at 2027.
 – The detector design is being finalized.
• Astrophysical neutrino measurements is one of the features of Hyper-Kamiokande.
 – Solar neutrino
 • Hep neutrino, seasonal variation, up-turn etc…
 – Supernova neutrino
 • Energy and time spectrum measurement, SN alarming etc..
 – Supernova Relic Neutrino
 • Supernova and SFR models, extraordinary SN
Backup