Presupernova Neutrinos Relating to the Final Evolution of Massive Stars

Takashi Yoshida

Department of Astronomy, University of Tokyo

International symposium on revealing the history of the universe with underground particle and nuclear research 2019 March 9, 2019, Tohoku University

Advanced Evolution of Massive Stars

Massive stars → M ≥ 8 M_☉ stars Fe core formation and core collapse (CC) Low-mass end → ONe core formation and an electron capture (EC) supernova (SN)

Advanced evolution of a 15 M_{\odot} star (Yoshida et al. 2016)

Neutrinos from a Presupernova (PreSN) Star

Studies on PreSN Neutrinos

Pioneering studies

e.g., Odrzywołek et al. (2004); Misiaszek et al. (2006); Odrzywołek et al. (2007); Odrzywołek (2009)

PreSN neutrino spectra using detailed stellar structure and evolution

Odrzywołek & Heger (2010); Kato et al. (2015); Yoshida et al. (2016); Kato et al. (2017); Patton et al. (2017a,b), Yoshida et al. (2019a, in prep.)

Supernova alarm

Asakura et al. (2016); Yoshida et al. (2016)

Neutrino Sources

Neutrino sources of a $15M_{\odot}$ **star**

- \bar{v}_{e} Pair neutrinos for days to minutes Neutrinos through β - decays from minutes
- v_e Electron capture neutrinos from minutes

Spectra of Pair Neutrinos

• Evolution of spectra of pair neutrinos produced in a $15M_{\odot}$ star (Yoshida et al. 2016)

- Core Si burning (4.4 days)
- O-shell burning (16—11 hours) Decrease in v flux
- Si-shell burning and core collapse (1 h~)

Neutrino Spectra in Collapse

• Neutrino spectra in the collapsing stage of a $15M_{\odot}$ star (Kato et al. 2017)

Neutrinos from EC SN Progenitor

EC SN progenitor (9 M_{\odot} star) (Takahashi et al. 2019)

ONe core \rightarrow **Core growth** \rightarrow ²⁰**Ne EC** \rightarrow **O ignition and deflagration**

 \rightarrow Fe core formation and collapse (~0.1 s) \rightarrow EC SN

PreSN v Detection by KamLAND and JUNO

 $\overline{\mathbf{v}}_e$ events through $p + \overline{\mathbf{v}}_e \rightarrow n + e^+$

• $N_{\text{Proton}} = 5.98 \times 10^{31}$ (Gando et al. 2013)

Detection efficiency (Asakura et al. 2016) *E*live=0.903: mean livetime-to-runtime ratio

• Average: $\varepsilon_{\rm S}(\varepsilon_{\rm p})=0.64$

• No Baloon: $\varepsilon_{\rm S}(\varepsilon_{\rm p}) \sim 0.9$

 $P_{\alpha e}$: Transition probability of $\overline{v}_{\alpha} \rightarrow \overline{v}_{e}$ $P_{ee} = 0.68$ for normal $P_{ee} = 0.02$ inverted

• $N_{\text{Proton}} = 1.19 \times 10^{33}$

Massive Star Models

Evolution of massive stars from H burning until core collapse

 HOngo Stellar Hydrodynamics Investigator (HOSHI) code (e.g., Takahashi et al. 2016, 2018)

• Initial mass and metallicity: 9 - $40M_{\odot}$, Z = 0.014 (Z_{\odot})

 $9-28, 30, 32, 35, 38, 40 M_{\odot}$

25 models

 4 different convection overshoot treatments
 Strong (L) / weak (M) until He burining On (ov,c) / off () after He burning

100 massive star models (L_{ov,c}, L, M_{ov,c}, M) (Yoshida et al. 2019b, in prep.)
98 core-collapse SN progenitors

(2 white dwarfs from 9 M_{\odot} stars (models $M_{ov,c}$ and M))

> Applications to presupernova neutrino events by KamLAND (Yoshida et al. 2019a, in prep.)

Stellar Mass and Convection Dependence

Neutrino events by KamLAND for 48 hours (Yoshida et al. 2019a, in prep.)

- Pair neutrinos
- **Set Example 2** Efficiency: Average, energy window: 0.9 < ε_p < 3.5 MeV
- *d* = 200pc (~ Betelgeuse)

SN Alarm by KamLAND

Detection efficiency: Average

Three \bar{v}_e events for 48 hour with 0.9 < ϵ_p < 3.5 MeV by KamLAND

(3.7 σ significance in *low* background)

(Yoshida et al. 2019a, in prep.)

SN Alarm by KamLAND

Detection efficiency: No Baloon

Three \bar{v}_e events for 48 hour with 0.9 < ϵ_p < 3.5 MeV by KamLAND

d = 200pc (~ Betelgeuse)

(Yoshida et al. 2019a, in prep.)

Normal

 $12L_{ov,c}$

Three events would be observed just before O shell burning.

13/15

Neutrino Events Revealing Burning Processes

Time evolution of preSN neutrino events *per hour* by JUNO *d* = 200pc (~ Betelgeuse) (Yoshida et al. 2016)

3 σ level of high background (BG) \rightarrow Reactor neutrino is considered.

8 - 17 hours before collapse Decrease in the neutrino events

Si core burning \rightarrow O shell burning

20

14/15

Ē

The central burning processes will be observed by neutrinos.

Summary

- Neutrinos from neighboring preSN stars ($d \sim 200$ pc) will be detectable.
- Neutrinos from a core collapse SN progenitor
 - From Si core burning for a few days through pair neutrino process Time variation by shell burnings would be observed.
 - \longrightarrow EC v_e and β \bar{v}_e dominate for the last several minutes.
- Neutrinos from an electron capture SN progenitor
 EC ν_e and β⁻ ν
 _e dominate for ~ 0.1 s.
 Explosion mechanism may be able to be specified.
- Expected neutrino events from a preSN star
 Up to several tens neutrino events by KamLAND for 48 hours
 Time variation by O shell burning would be observed by JUNO.
- SN alarm by preSN neutrinos
 - **Up to ~20 hours before SN explosion by KamLAND**

Complicated stellar mass dependence