Study of Gd(n, γ) reaction and γ rays from giant resonances of ¹²C and ¹⁶O

Makoto Sakuda for C01 Efforts (Okayama)

@ "Revealing the History of the Universe with Underground Particle and Nuclear Research 2019", Tohoku, 2019.03.09

Outline:

- 1. γ -ray spectrum of Gd(n, γ) and ANNRI-Gd model for SK-Gd project
- 2. γ rays from giant resonances of ¹²C and ¹⁶O
- 3. Evaluation of O,C(v, $v'\gamma$) events for SN neutrinos (10kpc)
- 4. Summary

Giant Resonances (GR)

and γ rays from resonances ^{158,156}Gd, ¹²C and ¹⁶O.

• 160 Gd resonance seen in photo-absorption=Photon Strength Function f(E_{γ}) (PSF). -We study 157 Gd(n, γ) 158 Gd and γ rays from 158 Gd.

Photon Energy (MeV)

¹²C and ¹⁶O GR
 in (p,p') reaction

1. Study of γ rays from ^{157,155,nat}Gd(n,γ) reaction and MC (ANNRI-Gd) Model for SK-Gd project

We performed a series of measurements of Gd(n,γ) reactions using high intensity pulsed neutron beam and ANNRI Germanium spectrometer.

1. γ -ray spectrum from thermal neutron capture on ¹⁵⁷Gd,

K. Hagiwara, T. Yano, T. Tanaka, M.S. Reen, P.K. Das, S. Lorenz, I. Ou, T. Sudo, Y. Yamada, T. Mori, T. Kayano, R. Dhir, Y. Koshio, M. Sakuda, A. Kimura, S. Nakamura, N. Iwamoto, H. Harada, M. Wurm, W. Focillon, M. Gonin, A. Ali and G. Collazuol (ANNRI-Gd), PTEP 2019, 023D01 (29pages).

- γ-ray spectrum from ^{155, nat}Gd(n,γ),
 A.Ali et al. (ANNRI-Gd), PoS (ICHEP2018) 120 (4 pages), in preparation for PTEP.
- **3.** 2γ angular correlations in ^{155, 157}Gd(n, γ) reaction
- β-version of MC (ANNRI-Gd) model is already being used in SK-Gd, XENONnT and NEOS (IBS, Korea).

1. Feature of γ -ray spectrum from ^{157,155}Gd(n, γ) - ~4 γ rays/event (E_{tot}=8MeV)-

- Probability Distribution from $E_x \rightarrow E_a = E_x E_{\gamma}$
 - ✓ Fermi Golden Rule: Probability=|Amptilude|^{2*}(Number of States)
 ✓ E ³ favors Large E f(E) favors Large E But o(E) favors Very Sm
 - ✓ E_{γ}^{3} favors Large E_{γ} , f(E_{γ}) favors Large E_{γ}^{2} , But ρ(E_{a}) favors Very Small E_{γ} .

1-1) ^{157,155}Gd(n,γ) Eγ spectrum (Data) and MC(ANNRI-Gd model), Tested for multiplicity=1,2,3,4.

• 157 Gd(n, γ) E γ (single) spectrum

¹⁵⁵Gd(n, γ) E γ spectrum

Data and MC in reasonable agreement.

1-2) $\gamma - \gamma$ angular correlation W(z) in ^{157,155}Gd(n, γ) (p6)

The definition of angular correlation W(z) for z=cosθ=[-1,1].
 Select 2 γ-ray dataset (E₁ and E₂) and make z distribution.

$$N_{ij} = N_0 \varepsilon_i(E_1) \varepsilon_j(E_2) W(Z)$$

(Z = cos θ)
$$W(Z) \propto \frac{N_{ij}}{\varepsilon_i(E_1)\varepsilon_j(E_2)}$$

1-2) Angular correlation W(z) of 2 γ rays in cascade (J_A \rightarrow J_B \rightarrow J_C), z=cos θ (skip-7)

For the angular momentum (j,m) of γ₁ in z-direction, only L=0 and m=+1 and -1 are allowed. Thus, the weight p(M) on M of (J,M) for γ₂ is restricted. Then, W(z) is not uniform.

$$W(\theta) \propto \sum_M p(M) \left| X_{JM}(\theta,\phi) \right|^2$$

$$\frac{dP}{d\Omega} \propto \left| \vec{X}_{JM}(\theta, \phi) \right|^2$$

BUT, If p(M)=1 for all M,
 W(z)=uniform, because

$$\sum_{M} \left| \vec{X}_{JM}(\theta, \phi) \right|^2 = \frac{2J+1}{4\pi}$$

No angular correlations of 2 γ rays from continuum (bulk) of ^{157,155}Gd(n, γ)

We observe no correlations for bulk of 2γ rays from continuum.

2. RCNP E398 ¹²C,¹⁶O(p,p'γ)

-Study of γ emission rate $R_{\gamma}(E_x)$ from Giant Resonance-

 ¹²C and ¹⁶O are being used as a target material in large scale neutrino experiments, since they are abundant (cheap).

(10)

• [Nulcear Physics] No systematic measurements of γ rays from giant resonance region (E_x=16-35MeV).

(1) Hadronic decay

(2) Electromagnetic decay

 [Supernova Detection] Neutral-Current γ production cross sections v⁻¹²C/¹⁶O may be significant, next to dominant inverse β-decay cross section.

2-1) E398 Experiment at RCNP(Osaka) - Magnetic Spectrometer (E_x) and NaI array (E) –

RCNP Magnetic Spectrometer "Grand Raiden" - $E_x = 392MeV - E_{p'}$, $\Delta E_x = 100keV - E_{p'}$

Grand Raiden Spectrometer

γ ray detector(NaI)

Analysis Method: E_x and E (NaI)

For each event, we measure: (1) E_x (Excitation energy) (2) E (γ -ray energy deposited in NaI detectors)

[Region 1] γ rays from hadronic decays

• γ -rays are emitted from the excited states of ¹¹B and ¹¹C after hadronic decay. As E_x increases, R_γ increases. For E_x >27MeV, GR cross section becomes small and R_γ decreases.

(16)

γ -ray emission rate $R_{\gamma}(E_{\chi})$ from hadronic decay - $R_{\gamma} \sim 45\%$ (¹²C) and 60% (¹⁶O) at max. -

 Data(---) are lower by 20-30% than the simple transmission calculations using optical potential(---).

$$T(E_x \to a + (A, i)) = \sum_{S=|J_A^i - s_a|}^{J_A^i + s_a} \sum_{L=|J_x - S|}^{J_x + S} T_L^a(\epsilon_a),$$
12C

(Region 2): Search for Electromagnetic decays -Make E_x-E plot -

- $E_x > 16$ MeV:Giant resonance
 - **Region 1** : Hadronic Decays
 - Region 2 : Electromagnetic Decays

[Region 2] γ rays from Direct Electromagnetic Decay

• We are beginning to observe the high energy γ rays (E=11-33MeV) from direct electromagnetic decay at $R_{\gamma 0}$ =(0.37± 0.04± 0.04)%. To establish the result, we must work on the systematic errors.

Interpretation of Direct EM decay (¹²C and ²⁰⁸Pb) in terms of E1 transition Calculation using (γ

$$J^{\pi} = 1^{-} - I^{2}C^{*}$$

$$E_{\gamma} \qquad E1$$

$$J^{\pi} = 0^{+} \qquad I^{2}C \text{ (g.s.)}$$

$$R_{\gamma 0} \propto \Gamma_{\gamma 0} \propto E_{\gamma 0}^{3} B(E1)$$

 $E_{\gamma 0}$ = Energy of emitted γ -ray

Only one result on direct EM decay of a heavy nucleus ²⁰⁸Pb is reported. Beene et al., Phys.Rev C 41, 920(1990).
 ¹²C rate is 5 times smaller, due to the small B(E1) = coupling of the photon to the giant resonance for ¹²C w.r.t. ²⁰⁸Pb.

19

3. Estimation of O,C(ν , $\nu'\gamma$) events for SN (10kpc)

• SN v flux $d\Phi/dE_v$: we use MB/FD or Nakazato Flux

- ✓ MB/FD T=3MeV (v_e), 5 MeV (v_e) and T=8MeV (v_μ , v_τ).
- Nakazato flux (Nakazato, Suzuki et al., ApJS.205,2(2013)).

Supernova v flux	$\langle E_{v_e} \rangle$ (MeV)	$\langle E_{\bar{v}_e} \rangle$ (MeV)	$\langle E_{\nu_x} \rangle$ (MeV)
F.D.	11.0	16.0	25.0
Nakazato	7.7	8.8	9.1

Table 5.3 Mean energies of the neutrinos from supernova explosion.

- Cross sections d_o(E_v)/dE_x: we use ¹²C [T.Yoshida et al., ApJ686,448(2008)] and ¹⁶O[T.Suzuki et al. PRC98,034613(2018)]. Shell Model calculation.
- The γ -ray emission rate $R_{\gamma}(E_x)$: we use our own data.

$$N_{\gamma}^{NC} = n_{tar.} \int_{0}^{E_{\nu}^{max}} dE_{\nu} \frac{d\Phi}{dE_{\nu}}(E_{\nu}) \left[\int_{E_{x}=16 \text{ MeV}}^{E_{x}=32 \text{ MeV}} dE_{x} \frac{d\sigma(E_{x}, E_{\nu})}{dE_{x}} \times R_{\gamma}(E_{x}) \right]$$

SN rate evaluation: ¹²C and ¹⁶O targets

Expected number of neutrino events from a core-collapse supernova at 10 kpc to be detected at JUNO (20 kton). [Very preliminary]

	Present work			Laha et al. (MB)	
Reaction	MB	FD	NK1	NK2	(JUNO collab.)
$p(ar{v}_e,e^+)n$	4933	5378	2194	1974	4857
$^{12}C(v, v')^{12}C^*(15.1 \text{ MeV})$	382	426	169	161	398
$^{12}C(\nu,\nu')^{12}C^{*}(E_x > 16 \text{ MeV})$	144	180	21	20	-

For CC events MB and FD, T = 5 MeV

For NC events

MB and FD,

T = 8 MeV

 Expected number of neutrino events from a core-collapse supernova at 10 kpc to be detected at Super-K (32.8kton). [Very preliminary]

	Present work				Beacom et. al.	Nakazato et. al.
Reaction	MB	FD	NK1	NK2	FD	NK1
$p(\bar{\mathbf{v}}_e, e^+)n$	7685	7632	3257	2931	8300	3199
$^{16}O(\nu,\nu')^{16}O^*(E_x > 16 \text{ MeV})$	354	456	57	52	710	-

 Charged-current scattering off ¹⁶O nucleus as a detection channel for supernova neutrinos, K.Nakazato, T.Suzuki, MS, PTEP 2018,123E02.

	ordi	nary supe	rnova	black hole formation		
reaction	no osc.	normal	inverted	no osc.	normal	inverted
$^{16}\mathrm{O}(u_e,e^-)\mathrm{X}$	41	178	134	2482	2352	2393
${}^{16}{ m O}(\bar{\nu}_{e},e^{+}){ m X}$	36	58	103	1349	1255	1055
electron scattering	140	157	156	514	320	351
inverse β -decay	3199	3534	4242	17525	14879	9255
total	3416	3927	4635	21870	18806	13054

Summary

- Measurement of γ -ray spectrum from ^{157, 155, nat}Gd(n, γ) and ANNRI-Gd Model
 - ¹⁵⁷Gd(n, γ) data and model: PTEP2019,023D01.
 - ^{155,nat}Gd(n,γ) and 2γ correlation, papers in preparation.
 - Download Web Page in preparation.
- Measurement of γ emission probabability $R_{\gamma}(E_x) = \sigma_{p,p'\gamma}/\sigma_{p,p'}$ from Giant Resonance in ¹²C,¹⁶O(p,p' γ) reaction
 - We measure $R_{\gamma}(E_x) = \sigma_{p,p'\gamma}/\sigma_{p,p'}$ for the first time for ¹²C for $E_x = 16-32$ MeV for the hadronic decay mode. $R_{\gamma}(E_x)$ starts from zero at $E_x = 16$ MeV and increases to $R_{\gamma}(E_x) = 47.9 \pm 0.5 \pm 3.5\%$ at $E_x = 27$ MeV and then decreases. The paper for ¹²C(p,p'\gamma) was submitted for publication.
 - We are beginning to observe the high energy γ rays (E=16-33MeV) from electromagnetic decay with $R_{\gamma}(E_x)=(0.37\pm0.04\pm0.04)\%$. To establish the result, we must work on the systematic errors.
 - We have similar result on ¹⁶O.
- We use dΦ/dE_v(Nakazato et al.)+dσ/dE(T.Suzuki)+ R_γ(E_x) (our hadronic decay rate) to evaluate NC γ production rate from SN neutrinos. (Ongoing)

Future

- We hope to extend E398 experiment by replacing a NaI array by Clover (Ge) Array (on-going at RCNP), and obtain a comprehensive understanding of both the hadronic and electromagnetic decay of ¹²C and ¹⁶O giant resonances.
- We can evaluate the NC γ production rate for SN neutrinos very precisely.
 CAGRA(Clover Array)の模式図

